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Automatic recognition of macaque facial expressions for detection of affective states 31 

 32 

Abstract 33 

Internal affective states produce external manifestations such as facial expressions. In humans, the Facial 34 
Action Coding System (FACS) is widely used to objectively quantify the elemental facial action-units 35 
(AUs) that build complex facial expressions. A similar system has been developed for macaque monkeys 36 
- the Macaque Facial Action Coding System (MaqFACS); yet unlike the human counterpart, which is 37 
already partially replaced by automatic algorithms, this system still requires labor-intensive coding. Here, 38 
we developed and implemented the first prototype for automatic MaqFACS coding. We applied the 39 
approach to the analysis of behavioral and neural data recorded from freely interacting macaque monkeys. 40 
The method achieved high performance in recognition of six dominant AUs, generalizing between 41 
conspecific individuals (Macaca mulatta) and even between species (Macaca fascicularis). The study 42 
lays the foundation for fully automated detection of facial expressions in animals, which is crucial for 43 
investigating the neural substrates of social and affective states. 44 

 45 

Significance Statement  46 

MaqFACS is a comprehensive coding system designed to objectively classify facial expressions based on 47 
elemental facial movements designated as Actions Units (AUs). It allows the comparison of facial 48 
expressions across individuals of same or different species based on manual scoring of videos, a labor- 49 
and time-consuming process. We implemented the first automatic prototype for AUs coding in macaques. 50 
Using machine learning, we trained the algorithm on video-frames with AU labels, and showed that after 51 
parameter tuning, it classified six AUs in new individuals. Our method demonstrates concurrent validity 52 
with manual MaqFACS coding and supports the usage of automated MaqFACS. Such automatic coding is 53 
useful not only for social- and affective- neuroscience research but also for monitoring animal health and 54 
welfare. 55 

  56 
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Introduction  57 

Facial expressions are both a means of social communication and also a window to the internal states of 58 
an individual. The expression of emotions in man and animals was discussed first by Darwin in his 59 
eponymous treatise in which he attributed the shared features of emotional expression in multiple species 60 
to a common ancestor (Darwin 1872). Further elaboration of these ideas came from detailed 61 
understanding of the neuromuscular substrate of facial expressions, i.e., the role of each muscle in moving 62 
facial features into configurations that have social communicative value. These studies brought to light 63 
the homologies, but also the differences in how single facial muscles, or groups of muscles give rise to a 64 
relatively stereotypical repertoire of facial expressions (Ekman 1989, Ekman and Keltner 1997, Burrows, 65 
Waller et al. 2006, Vick, Waller et al. 2007, Parr, Waller et al. 2010). 66 

The affective states that give rise to facial expressions are instantiated by distinct patterns of neural 67 
activity (Panksepp 2004) in areas of the brain that have projections to the facial motor nucleus in the 68 
pons. The axons of the motor neurons in the facial nucleus distribute to the facial musculature, including 69 
the muscles that move the pinna (Jenny and Saper 1987, Welt and Abbs 1990). Of all possible facial 70 
muscle movements, only a small set of coordinated movements give rise to unique facial configurations 71 
that correspond, with some variations, to primary affective states. Human studies of facial expressions 72 
proposed six primary affective states or “universal emotions” that were present in facial displays across 73 
cultures (Ekman and Friesen 1986, Fridlund, Ekman et al. 1987, Ekman and Friesen 1988, reviewed by 74 
Ekman, Friesen et al. 2013). The cross-cultural features of facial expressions allowed the development of 75 
an anatomically based Facial Action Coding System (FACS) (Friesen and Ekman 1978, Ekman, Friesen 76 
et al. 2002). In this system, a numerical code is assigned for each elemental facial action that is identified 77 
as an Action Unit (AU). Considering the phylogenetic continuity in the facial musculature across primate 78 
species (Burrows and Smith 2003, Burrows, Waller et al. 2006, Burrows, Waller et al. 2009, Parr, Waller 79 
et al. 2010), a natural extension of human FACS was the homologous MaqFACS (Parr, Waller et al. 80 
2010), developed for coding the facial action units in Rhesus macaques (for multi-species FACS review 81 
see: Waller, Julle-Daniere et al. 2020). 82 

The manual scoring of action units (AUs) requires lengthy training and a meticulous certification process 83 
for FACS coders, that is a time-consuming process. Therefore, considerable effort has been made towards 84 
the development of automatic measurement of human facial behaviour (Sariyanidi, Gunes et al. 2015, 85 
reviewed by Barrett, Adolphs et al. 2019). These advances do not translate seamlessly to macaque 86 
monkeys, and importantly, similar developments are desirable because macaques are commonly used to 87 
investigate and understand the neural underpinnings of communication via facial expressions (Livneh, 88 
Resnik et al. 2012, Pryluk, Shohat et al. 2020). We therefore aimed to develop and test an automatic 89 
system to classify AUs in macaques, one that would allow comparison of elicited facial expressions and 90 
neural responses at similar temporal resolutions.  91 

Like humans, macaque monkeys do not normally activate a full set of action units required for a classical 92 
stereotypical expression, and partial sets of uncommon combination of action units are also probable and 93 
give rise to mixed or ambiguous facial expressions (Chevalier-Skolnikoff 1973, Ekman and Friesen 94 
1976). Therefore, we chose to classify not only the fully developed facial expressions (Blumrosen, 95 
Hawellek et al. 2017) but also action units that were shown to play a role in exhibition of affective states 96 
and social communication among macaque monkeys. We included even relatively rare facial expressions 97 
as long as certain action unit were reliably involved in these expressions. We test the automatic 98 
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recognition of facial configurations and show that it generalizes to new situations, between conspecific 99 
individuals, and even across macaque species. Taken together, this work demonstrates concurrent validity 100 
with manual MaqFACS coding and supports the usage of automated MaqFACS in social- and affective- 101 
neuroscience research, as well as in monitoring animal health and welfare. 102 

 103 

Materials and Methods 104 

Video datasets 105 

We used videos from two different datasets. The first, Rhesus dataset (RD), consists of 53 videos from 106 
five Rhesus macaques (selected out of 10 Rhesus monkeys). Part of this dataset was used for training and 107 
testing our system within and across Rhesus subjects. The second, Fascicularis dataset (FD), includes 108 
two videos from two Fascicularis macaques and was used only for testing our system across Fascicularis 109 
subjects.  110 

All the videos in both sets capture frontal (or near-frontal) views of head-fixed monkeys. The video- 111 
frames were coded for the AUs present in each frame (none, one, or many).  112 

The subjects and the videos for RD were selected with respect to the available data in FD, considering the 113 
scale similarity, the filming angle and the AU frequencies occurring in the videos.  114 

The Rhesus Macaque Facial Action Coding System (MaqFACS) 115 

There are several stereotypical facial expressions that macaques produce (Fig. 1A), that represent, as in 116 
humans, only a subset of the full repertoire of all the possible facial movements. For example, (Fig. 1B) 117 
represents three common facial expressions from the Fascicularis monkey dataset (FD) (left, blue) and 118 
two other facial configurations that, among others, occurred in our experiments (right, yellow). Therefore, 119 
to allow the potential identification of all the possible facial movements (both the common and the less 120 
common ones), we chose to work in the MaqFACS domain and to recognize AUs, rather than searching 121 
for predefined stereotypical facial expressions. MaqFACS contains three main groups of AUs based on 122 
facial sectors: upper face, lower face, and ears (Parr, Waller et al. 2010). Each facial expression is 123 
instantiated by a select combination of AUs (Fig. 1C). 124 

AU selection 125 

The criteria for AU selection for the analysis in this work, were their frequencies (which should be 126 
sufficient for training and testing purposes) and the importance of each AU for affective communication 127 
(Fig. 1D, E) (Parr, Waller et al. 2010, Ballesta  et al. 2016, Mosher et al. 2016). Frequent combinations of 128 
lower face AUs together with upper face AUs (Fig. 1F outside the magenta and green frames) may hint at 129 
the most recurring facial expressions in the test set. For example, UpperNone AU together with lower 130 
face AU25, generate a near-neutral facial expression. Considering that our aim is to recognize single AUs 131 
(as opposed to complete predefined facial expressions), lower face and upper face AUs were not merged 132 
into single analysis units. This approach is also supported by the MaqFACS coding process, which is 133 
performed separately for the lower and upper face. 134 
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The most frequent upper face AUs in FD were the none-action AU (defined here as “UpperNone”), the 135 
Brow Raiser AU1+2 and AU43_5, which is a union of Eye Closure AU43 and Blink AU45 (Fig. 1D). 136 
The two latter AUs differ only in the movement duration, and hence were joined. 137 

There were five relatively frequent AUs in the lower face test set (Fig. 1E) that we merged into several 138 
AU groupings. All AUs that mostly co-occurred with other ones (within the same face region) were 139 
analyzed as a combination rather than single units (Fig. 1F inside the green frame). The upper face AUs 140 
however, rarely appeared as combination (Fig. 1F inside the magenta frame).  141 

Overall, our system was trained to classify 6 units: AU1+2, AU43_5 and UpperNone in the upper face, 142 
and AU25+26, AU25+26+16 and AU25+26+18i in the lower face (Fig. 1G and 1H, left). Even though 143 
AU12 was one of the most prevalent AUs in the FD test set and often occurred in combination with other 144 
lower face AUs, it was eliminated from further analysis because it appeared too infrequently in the 145 
Rhesus monkey dataset (RD). 146 

Animals and procedures 147 

All surgical and experimental procedures were approved and conducted in accordance with the 148 
regulations of the Institute Animal Care and Use Committee (IACUC), following NIH regulations and 149 
with AAALAC accreditation.  150 

Two male Fascicularis monkeys (Macaca fascicularis) and 10 Rhesus monkeys (Macaca mulatta) were 151 
videotaped while producing spontaneous facial movements. All monkeys were seated and head-fixed in a 152 
well-lit room during the experimental sessions.  153 

The two monkeys produced facial behaviors in the context described in detail in (Pryluk, Shohat et al. 154 
2020) (Fig. 2, Fig. 2-1, Fig. 2-2, Fig. 2-3). The facial movements obtained during neural recordings have 155 
not been previously analyzed in terms of action units. Earlier experiments showed that self-executed 156 
facial movements recruit cells in the amygdala (Livneh, Resnik et al. 2012, Mosher, Zimmerman et al. 157 
2016) and the ACC (Livneh, Resnik et al. 2012) and that neural activity in these regions is temporally 158 
locked to different socially meaningful, communicative facial movements (Livneh, Resnik et al. 2012). 159 
The video data from these monkeys was captured using two Ximea_MQ013RG (Ximea GmbH, Munster, 160 
Germany) cameras (one camera for the whole face and one dedicated to the eyes), with Kowa (Kowa 161 
Optical Products Co. Ltd., Saitama, Japan) lenses mounted on them: 16mm LM16JC10M for the face- 162 
and 25mm LM25JC5M2 for the eye-camera. The frame rates of the face- and eye-videos are 34 frames 163 
per second (~29ms) and 17 frames per second (~59ms), respectively. The size parameters are 800x700 164 
pixels for the facial videos and 700x300 pixels for the videos of eyes. Both video types have 8-bit 165 
precision for grayscale values. The lighting in the experiment room included white LED lamps and an 166 
infrared LED light bar (MetaBright Exolight ISO-14-IRN-24, Metaphase Technologies, Philadelphia, PA, 167 
USA) for face illumination. 168 

The 10 Rhesus monkeys were filmed during baseline sessions as well as during provocation of facial 169 
movements by exposure to a mirror and to videos of other monkeys. Videos of facial expressions of the 170 
Rhesus macaques were recorded at 30 frames per second (~33ms) rate, with 1280x720 pixels size 171 
parameters and 24-bit precision for RGB values. 172 

 173 
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Behavioural paradigms 174 

The intruder task is similar to the one described in (Pryluk, Shohat et al. 2020), including a monkey 175 
intruder instead a of human (Fig. 2, Fig. 2-1, Fig. 2-2, Fig. 2-3). A single experimental block includes 6 176 
interactions (trials) with a monkey intruder that is seated behind a fast LCD shutter (<1ms response time, 177 
307mm x 407 mm) which is used to block the visual site. When the shutter opens, the monkeys are able 178 
to see each other. Each trial is of ~9 sec and the shutter is closed for ~1 sec between the trials. Altogether, 179 
the length of the interaction part (from the first shutter opening and until its last closure) is 60 sec.  180 

We recorded the facial expressions of the subject monkey, along with monitoring the intruder monkey 181 
behavior. When the intruder monkey was brought to or out from the room (the “enter-exit” stage), the 182 
shutter was closed and the subject monkey could not see any part of the intruder unless the shutter was 183 
open. The “enter” and the “exit” phases were of 30 sec long each.  184 

Data labeling 185 

Video-data annotation was carried out using Noldus software “The Observer XT” 186 
(https://www.noldus.com/human-behavior-research/products/the-observer-xt). The recorded behavior 187 
coding was exported in Excel (Microsoft Excel 2016) format for further processing.  188 

RD videos were labeled by FACS- (Friesen and Ekman 1978, Ekman, Friesen et al. 2002) and 189 
MaqFACS- (Parr, Waller et al. 2010) accredited coding expert. Another trained observer performed the 190 
coding of all FD videos according to the MaqFACS manual based on (Parr, Waller et al. 2010). Facial 191 
behavior definitions were discussed and agreed prior to the coding. To ensure consistency, we checked 192 
the inter-rater reliability (IRR) for one of the two FD videos, against additional experienced coder. Our 193 
target percentage of agreement between observers was set to 80% (Baesler and Burgoon 1987) and the 194 
IRR test resulted with 88% agreement (Figure 5-1). 195 

All the videos were coded for MaqFACS AUs along with their frequencies and intensities. Analyzed 196 
frames with no labels were considered as frames with neutral expression. Upper- and lower-face AUs 197 
were coded separately. This partition was inspired by observations indicating that facial actions in the 198 
lower face have little influence on facial motion in the upper face and vice versa (Friesen and Ekman 199 
1978). Moreover, neurological evidence suggests that lower and upper face are engaged differently by 200 
facial expressions and their muscles are controlled by anatomically distinct motor areas (Morecraft, Louie 201 
et al. 2001).  202 

Image preprocessing 203 

For each video from both datasets, seven landmark points (two corners of each eye, two corners of the 204 
mouth and the mouth center) were manually located on the mean image of frames with neutral 205 
expression. For image height h and width w, the reference landmark points were defined by the following 206 
coordinates: (0.42w, 0.3h) and (0.48w, 0.3h) for left eye corners, (0.52w, 0.3h) and (0.58w, 0.3h) for right 207 
eye corners, (0.44w, 0.55h) for mouth left corner, (0.56w, 0.55h) for mouth right corner and (0.5w, 0.5h) 208 
for the mouth center (Fig. 3-1). 209 
Affine transformations (geometric transformations that preserve lines and parallelism, e.g., rotation) were 210 
applied to all frames of all videos so that the landmark points were mapped to predefined reference 211 
locations (Fig. 3A, Fig. 3-1). The alignment procedure was necessary to correct any movement, either 212 
from the alignment of the camera (angle, distance, height) or movement of the monkey, that would shift 213 
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the facial landmarks between video frames. After the alignment procedure, total average image of all 214 
mean neutral expression frames was calculated. Two rectangular ROIs (regions of interest), one for the 215 
upper face and one for lower face, were marked manually on the total average image (Fig. 3B). Finally, 216 
all the frames were cropped according to the ROI windows (Fig. 3C), resulting in 396x177 pixel upper 217 
face images and 354x231 pixel lower face images. After this step, the originally RGB images were 218 
converted to grayscale. For each video, one “optimal” neutral expression frame was selected out of all the 219 
neutral expression images. Difference images (δ-images) were generated by subtraction of the optimal 220 
neutral frame from all the frames of the video (Fig. 3D, Fig. 1G and 1H, right). The main idea behind this 221 
operation was to eliminate variability due to texture differences in appearance (e.g. illumination changes), 222 
and to analyze variability of facial distortions (e.g. action units) and individual differences in facial 223 
distortion (Bartlett, Viola et al. 1996). In the last preprocessing step, upper face and lower face databases 224 
(DBs) were created by converting the δ-images to single dimension vectors and storing them as a 2- 225 
dimnesional matrix containing the pixel brightness values (one dimension is of size of the total image 226 
pixels and the second represents the images quantity). The DBs were then used for construction of 227 
training and test sets (Fig. 3E).  228 

Eigenfaces: Dimensionality reduction and feature extraction 229 

Under controlled head-pose and imaging conditions, the statistical structure of facial expressions may be 230 
efficiently captured by features extracted from Principal Component Analysis (PCA) (Calder, Burton et 231 
al. 2001). This was demonstrated in the “EigenActions” technique (Donato, Bartlett et al. 1999), where 232 
the facial actions were recognized separately for upper face and lower face images (the well-known 233 
“Eigenfaces”). According to this technique, the PCA is used to compute a set of subspace basis vectors 234 
(referred to as the ‘‘eigenfaces’’) for a dataset of facial images (the training set), which are then projected 235 
into the compressed subspace. Typically, only the N eigenvectors associated with the largest eigenvalues 236 
are used to define the subspace, where N is the desired subspace dimensionality (Draper, Baek et al. 237 
2003). Each image in the training set may be represented and reconstructed by the mean image of the set 238 
and a linear combination of its principal components (PCs). The PCs are the eigenfaces and the 239 
coefficients of the PCs in the linear combination instance their weights. The test images are matched to 240 
the training set by projecting them onto the basis vectors and finding the nearest compressed image in the 241 
subspace (the eigenspace). 242 

We applied the eigenfaces analysis on the training frames (the δ-images), which were first zero-meaned 243 
(Fig. 3F). Once the eigenvectors were calculated, they were normalized to unit length, and the vectors 244 
corresponding to the smallest eigenvalues (under 10ି଺) were eliminated.  245 

Classification 246 

One of the benefits of the mean subtraction and the scaling to unit vectors is that this operation projects 247 
the images into a subspace where Euclidean distance is inversely proportional to correlation between the 248 
original images. Therefore, nearest neighbour matching in eigenspace establishes an efficient 249 
approximation to image correlation (Draper, Baek et al. 2003). Consequently, we employed a K-Nearest 250 
Neighbors (KNN) classifier in our system. Related to the choice of classifier, previous studies show that 251 
when PCA is used, the choice of the subspace distance-measure depends on the nature of the 252 
classification task (Draper, Baek et al. 2003). Based on this notion and other observations (Bartlett, 253 
Donato et al. 2000), we chose the Euclidian distance and the cosine of the angle between feature vectors 254 
to measure similarity. In addition, to increase the generality of our approach and to validate our results, 255 
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we also tested a Support Vector Machine (SVM) classifier. To evaluate the performance of the models we 256 
define a classification trial as successful if the AU predicted by the classifier was the same as in the probe 257 
image. To further justify the classification of AUs separately for upper face and lower face ROIs, it is 258 
worth mentioning that evidence suggest that PCA-based techniques performed on full-face images lead to 259 
poorer performance in emotion recognition compared to separate PCA for the upper and lower regions 260 
(Padgett and Cottrell 1997, Bartlett 2001). 261 

To train a classification model for AUs recognition, we used the weights of the principal components 262 
(PCs) as predictors. To predict the AU of a new probe image, the probe should be projected onto the 263 
eigenspace to estimate its weights (Fig. 3F). Once the weights are known, AU classification may be 264 
applied. The output of the classifier of each facial ROI is the AU that is present in the frame (Fig. 3G). To 265 
increase the generality of our approach and to validate our results, we used both K-Nearest Neighbors 266 
(KNN) and Support Vector Machine (SVM) classifiers.  267 

Parameter selection 268 

In the KNN classification, we examined the variation of three main parameters: the number of the 269 
eigenspace dimensions (PCs), the subspace distance metric and k - the number of nearest neighbors in the 270 
KNN classifier.  271 

Multiple ranges of PCs were tested (the “pcExplVar” parameter), from PC quantity that cumulatively 272 
explains 50% of the variance of each training set to 95%; k was varied from 1 to 12 nearest neighbors and 273 
the performance was also tested with Euclidian and cosine similarity measures. For each training set and 274 
parameter set, the features were recomputed and the model performance was re-estimated. The process 275 
was repeated across all the balanced training sets (see Data under-sampling). The parameters of the 276 
models and the balanced training sets were selected according to the best classification performance in the 277 
validation process.  278 

Data under-sampling 279 

The training sets in this study were composed of Rhesus Dataset (RD) frames from AU1+2, AU43_5 and 280 
UpperNone categories in the upper face, and AU25+26, AU25+26+16 and AU25+26+18i in the lower 281 
face (in a non-overlapping manner relatively to each ROI). For the training purposes, for both ROIs, the 282 
RD frames were randomly under-sampled 3-10 times (depending on the data volume), producing the 283 
“balanced training sets”. The main reason for this procedure was to balance the frame quantity of the 284 
different AUs in the training sets (He and Garcia 2009). For each dataset, the size of the balanced training 285 
set was defined based on the smallest category size (Table 1). As a result, for the training processes in our 286 
experiments we used upper face and lower face balanced training sets of size 3639 and 930 frames each, 287 
correspondingly.  288 

It should be noted that the under-sampling procedure influences only the training but not the test sets 289 
composition (only the frames for training are selected from the balanced training sets). The test set 290 
composition depends on the subjects and the videos selected for the testing, and considers all the available 291 
frames that fit the task criteria (consequently, they are the same across all the balanced training sets).  292 

Validation and model evaluation 293 

We tested three types of generalization. For each type of generalization, the performance was evaluated 294 
independently for upper face and lower face, using holdout validation for the Fascicularis data (Geisser 295 
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1975) and leave-one-out cross validation (CV) for the Rhesus data (Tukey 1958). The leave-one-out 296 
technique is advantageous for small datasets because it maximizes the available information for training, 297 
removing only a small amount of training data in each iteration. Applying the leave-one-out CV, data 298 
from all subjects (or videos) but one, was used for the system training, and the testing was performed on 299 
the one remaining subject (or video). We designed the CV partitions constraining equal number of frames 300 
in each class of the training sets. In both the leave-one-out CV and the holdout validation, images of the 301 
test sets were not part of the corresponding training sets, and only the training frames were retrieved from 302 
the balanced training sets. To ensure the data sufficiency for training and testing, a subject (or video) was 303 
included in the partition for CV only if it had enough frames of the three AU classes (separately for upper 304 
face and lower face).  305 
For each generalization type, the training and the testing sets were constructed as following: 306 

1. Within subject (Rhesus): for each CV partition, frames from all videos but one, from the same 307 
Rhesus subject, were used for training. Frames of the remaining video were used for testing. 308 
Performed on RD, on three balanced training sets. To be included in a CV partition for testing, 309 
the training and the test sets for a video had to consist of at least 20 and 5 frames per class, 310 
correspondingly. Some subjects did not meet the condition, and this elimination process resulted 311 
with three subjects for upper face and four subjects for lower face CV.  312 

2. Across subjects (Rhesus): for each CV partition, frames from all videos of all Rhesus monkeys 313 
but one, were used for training. Each test set was composed of frames from videos of the one 314 
remaining monkey. Performed on RD, on three balanced training sets. To be included for testing 315 
in the CV, the training and the test sets for a subject had to contain at least 150 and 50 frames of 316 
each class, correspondingly. In total, four subjects were included in the upper face and three in 317 
the lower face testing. 318 

3. Across Species: frames from all videos of the five Rhesus monkeys were used for training. 319 
Frames from the two Fascicularis monkeys were used for validation and testing. In this case, a 320 
holdout model validation was carried out independently for each Fascicuaris monkey (each 321 
subject had a different set of model parameters selected). For this matter, each Fascicularis 322 
monkey’s dataset was randomly split 100 times in a stratified manner (so the sets will have 323 
roughly the same class proportions as in the original dataset) to create two sets: validation set 324 
with 80% of the data and test set with 20% of the data. Overall, the training sets were constructed 325 
from 10 balanced training sets of the Rhesus dataset. Validation and test sets (produced by 100 326 
splits in total) included 80% and 20% of the Fascicularis dataset, correspondingly. The best 327 
model parameters were selected according to the mean performance in validation set (over 100 328 
splits), and the final model evaluation was calculated based on the test set mean performance 329 
(over the 100 splits, as well). 330 

Performance measures 331 

Although the balanced training sets and the CV partitions were constructed to maintain the total number 332 
of actions as even as possible, the subjects and their videos in these sets possessed different quantities of 333 
actions. In addition, while we constrained the sizes of the classes within each training set to be equal, we 334 
used the complete available data for the test sets. Since the overall classification correct rate (accuracy) 335 
may be an unreliable performance measure due to its dependency on the targets to non-targets proportion 336 
(Pantic and Bartlett 2007), we also applied a sensitivity measure (Benitez-Quiroz, Srinivasan et al. 2017) 337 
for each AU (where the target is the particular AU and the non-targets are the two remaining AUs).  338 
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We used the average sensitivity measure (average true positive rate - ܴܶܲതതതതതത) to select the best parameter 339 
set. To compare the performance of the classifiers, we present the generalization results on a subject (i.e., 340 
individual monkey) level (rather than video), for each classification type. Performance on Fascicularis 341 
dataset is reported as the mean performance of two parameter sets (one set per subject). 342 

Single-neuron activity analysis 343 

We analyzed a subset of neurons which were previously reported in (Pryluk, Shohat et al. 2020) and 344 
corresponded to the relevant blocks of monkey-monkey interactions. The neural analysis was performed 345 
with respect to facial AUs, focusing on 400-700 ms before and after the start of AU elicitation by the 346 
subject monkey.  347 

Neural activity was normalized according to the baseline activity before the relevant block, using the 348 
same window length (300 ms) to calculate the mean and s.d. of the firing rate. 349 

Therefore, the normalized (z-scored) firing rate (FR) was: 350 

௡௢௥௠௔௟௜௭௘ௗܴܨ = ܴܨ  −  ݉݁ܽ݊௕௔௦௘௟௜௡௘ݏ.݀.௕௔௦௘௟௜௡௘  

Software 351 

A custom code for automatic MaqFACS recognition and data analysis was written in Matlab R2017b 352 
(https://www.mathworks.com/). The code described in the paper is freely available online at [URL 353 
redacted for double-blind review]. The code is available as Extended Data. 354 

Results 355 

Eigenfaces – unraveling the hidden space of facial expressions  356 

Intuitively, light and dark pixels in the eigenfaces (Fig. 4A, B) reveal the variation of facial features 357 
across the dataset. To further interpret their putative meaning, we varied the eigenface weights to 358 
demonstrate their range in the training set, producing an image sequence for each PC (Fig. 4C, D). This 359 
suggests that PC1 of this upper face set (Fig. 4C top, left-to-right) codes brows raising (AU1+2) and eyes 360 
opening (AU43_5). In contrast, PC2 resembles eyes closure (Fig. 4C bottom, bottom-up). Similarly, PC1 361 
of the lower face set (Fig. 4D top, left-to-right) probably describes nose and jaw movement. Finally, PC2 362 
for the lower face (Fig. 4D bottom, bottom-up) plausibly correspond to nose, jaw and lip movements, 363 
reminding the transition from pushed forward lips (AU25+26+18i) to depressed lower lip 364 
(AU25+26+16). 365 

To illustrate the eigenspace concept, we present decision surfaces of two trained classifiers (Fig. 4E,F), 366 
along their first two dimensions (the weights of PC1 and PC2) which account for changes in facial 367 
appearance in (Fig. 4C,D). We show several training and test samples along with their locations following 368 
the projection onto the eigenspace. The projection of the samples is performed to estimate their weights, 369 
which are then used by the classifier as predictors.  370 

  371 
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 372 

Parameter selection 373 

Example of parameter selection (Materials and Methods) for a Fascicularis subject is shown in Fig. 5A. 374 
Interestingly, this upper face classification required much larger pcExplVar (93% versus 60% in the lower 375 
face; the difference observed in both Fascicularis subjects). Specifically, this upper face classifier 376 
achieved its best performance with 264 PCs, opposed to the lower face classifier succeeding with only 15 377 
PCs (Fig. 5B). The most likely explanation is the large difference between the training-set sizes (3639 378 
upper face versus 930 lower face images). Additionally, the eye-movement in the upper face images may 379 
require many PCs to express its variance.  380 

In contrast, the pcExplVar parameter behaved differently for generalizations within and across Rhesus 381 
subjects: their best upper face classifiers required pcExplVar of 85%, and 83% in the lower face sets. The 382 
notable difference between the parameters of these datasets suggests that one should tune a different 383 
parameter set for each dataset. Generally, the Rhesus dataset required much larger pcExplVar to describe 384 
the lower face than the Fascicularis dataset.  385 

Performance analysis 386 

Overall, the best parameter set for generalization to a new video within subject (Rhesus) using KNN 387 
(Materials and Methods), performed with 81% accuracy and 74% ܴܶܲതതതതതത per subject for upper face, along 388 
with 69% accuracy and 62% ܴܶܲതതതതതത for lower face, where the chance-level is 33% (Fig. 5C, left). Best 389 
generalization across subjects (Rhesus) yielded  ܴܶܲതതതതതത of 72% and 53% for upper and lower face 390 
respectively, with corresponding accuracy of 75% and 43% (Fig. 5C, middle), compared to 33% chance- 391 
level. The better performance in the upper face may be explained by its larger number of subjects in the 392 
CV (four in the upper face, only three in the lower face) and by greater number of examples available for 393 
training. Interestingly, applying the best parameter set of generalization within subject to classifiers 394 
generalizing across subjects, produced close-to-best performance (upper face 71% and lower face 50% 395 ܴܶܲതതതതതത). This finding suggests that tuning KNN parameters for generalization within Rhesus subjects, might 396 
be enough also for across-Rhesus-subjects generalization. 397 

The finest results, however, were achieved in generalization between species with 84% ܴܶܲതതതതതത for upper 398 
face and 83% for lower face, with corresponding accuracy of 81% and 90%, concerning 33% chance- 399 
level (Fig. 5C, right). To examine whether our findings depend on the particular classification algorithm, 400 
we additionally tested this generalization with multiclass Support Vector Machine (SVM) approach. This 401 
improved the ܴܶܲതതതതതത to 89% for both ROIs, indicating the advantage of using eigenfaces-based techniques 402 
for MaqFACS AUs classification.  403 

Finally, we have also compared the performance of the classifier to the human coders to determine 404 
whether the algorithm is superior or inferior to the average, the slow and somewhat subjective human 405 
decision. Due to the variability between raters, we found that that the algorithm was more accurate for 406 
certain AUs whereas the human raters were more accurate for other AUs (data shown in Figure 5-1). 407 
Specifically, for UpperNone AU, the classifier had average sensitivity of 84% vs. 81% in the human 408 
coding, and for AU 1+2 its average sensitivity was 71% vs. raters’ sensitivity of 92.3%. For AU 43_5, the 409 
classifier performed with average sensitivity of 96%, which is similar to the sensitivity of the human 410 
coders. For the lower face, the average sensitivity of the classifier for AU 25+26+16, AU 25+26+18i and 411 
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AU 25+26 was 70%, 88% and 91% as opposed to 63.6%, 100% and 87.5% sensitivity of the human 412 
coders, respectively. Overall, our method generalized to Fascicularis monkeys with average accuracy of 413 
81% for upper face and 90% for lower, as compared to the human inter-rater reliability (IRR) of 88%. 414 

Altogether, the upper face KNN classifiers (Fig. 5D, top) separated well AU43_5, and had typical 415 
confusions between UpperNone and AU1+2. Most lower face misclassifications (Fig. 5D, bottom) were 416 
between AU25+26+16 versus AU25+26 and AU25+26+18i versus AU25+26. Characteristic outputs from 417 
the system are shown in Fig. 5E.  418 
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Behavioral analysis 419 

To demonstrate the potential applications of our method, we used it to analyze the facial expressions 420 
produced by subject monkeys when exposed to a real life “intruder” (Fig. 2, Fig. Fig. 2-1, Fig. 2-2, Fig. 2- 421 
3) (Pryluk, Shohat et al. 2020). The subject monkey was sitting behind a closed shutter, when the 422 
“intruder” monkey was brought into the room (“enter” period). The shutter opened allowing the two 423 
monkeys to see each other 18 times. After the last closure of the shutter, the intruder was taken out from 424 
the room (“exit” period).  425 

As the subject monkey was in head-immobilization, the facial expressions produced under these 426 
conditions were a reduced version of the natural facial expressions that often include head and body 427 
movements. To test the ethological validity of such reduced, or schematic facial expressions, we 428 
determined whether they carry signal value, i.e., they are sufficient to elicit a situation-appropriate 429 
reciprocation for a social partner. We found that when monkeys familiar with each other found 430 
themselves in an unusual situation (open shutter) they reassured each other with reciprocal lip-smacking 431 
facial expressions as shown in Fig. 2-1, Fig. 2-2 and Fig. 2-3. We verified, therefore, that multiple pairs of 432 
monkeys can meaningfully communicate with each other when one of the social partners is in head 433 
immobilization.   434 

Statistical analysis of classification results for subject monkey B (Fig. 6A) revealed that in the presence of 435 
intruder, he produced several facial expressions including UpperNone and AU25+26+18i, often 436 
associated with cooing behavior. Cooing was more frequent during the “enter-exit” and open-shutter 437 
periods, than during closed-shutter periods (Fig. 6B top, Fig. 6-1a left, ߯2, p<1e-3). Moreover, subject B 438 
produced AU1+2 and AU25+26 combination more frequently during the “enter-exit” and closed-shutter 439 
periods, than during the open-shutter periods (Fig. 6B bottom, Fig. 6-1a right, ߯2, p<1e-3). We interpret 440 
this pattern as an expression of the monkey’s alertness and interest in events that were signaled by 441 
auditory but not visual inputs. Similarly, subject monkey D (Fig. 6C) produced action unit AU1+2 and 442 
AU25+26+18i together most frequently when the intruder was visible, and on occasions when the shutter 443 
was closed (intruder behind the shutter), but infrequently during the “enter-exit” periods (Fig. 6D, Fig. 6- 444 
1b, ߯2 , p<1e-3). In a social context, this pattern is associated with the lip-smacking behavior (Parr, 445 
Waller et al. 2010), representing an affiliative, appeasing social approach (Hinde and Rowell 1962).  446 

Neural analysis 447 

Finally, to validate the concept and strengthen the relevancy of automatic MaqFACS for neuroscience 448 
applications, we used our method to determine whether neural activity recorded from brain regions 449 
involved in facial communication (see Materials and Methods) is related to specific AUs (Fig. 2). Indeed, 450 
neurons in the amygdala and anterior cingulate cortex (ACC) were previously shown to respond with 451 
changes in firing rate during the production of facial expression (Livneh, Resnik et al. 2012). In the 452 
monkeys’ interaction block, responses were computed from the time when the subject monkey started 453 
initiating AU25+26+18i (Materials and Methods). Re-analyzing the previously obtained data (Pryluk, 454 
Shohat et al. 2020) showed that neurons responded before (Fig. 6E left) or after (Fig. 6E right) the 455 
production of the socially meaningful AU25+26+18i. This finding supports the hypothesis that these 456 
regions hold neural representations for the production of single AUs or socially meaningful AU 457 
combinations.   458 
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 459 

Discussion  460 

This work pioneers the development of an automatic system for the recognition of facial action units in 461 
macaque monkeys. We based our approach on well-established methods that were successfully applied in 462 
human studies of facial action units (Donato, Bartlett et al. 1999). Our system achieved high accuracy and 463 
sensitivity and the results are easily interpretable in the framework of facial communication among 464 
macaques. We tested our algorithm using different macaque-videos datasets in three different 465 
configurations: within individual Rhesus monkeys, across individuals of Rhesus monkeys, and across 466 
Rhesus and Fascicularis monkeys (generalizing across species). Performance (recognition rates) was 467 
obtained for both upper and lower face and using several classification approaches, indicating that the 468 
success of this method does not depend on a particular algorithm.  469 

We aimed to build on commonly used and well-established tools, in order to enhance applicability and 470 
ease-of-use. The pipeline of our system includes (A) alignment to predefined facial landmarks (B) 471 
definition of upper and lower face ROIs (C) cropping the images to ROIs (D) generation of (difference) δ- 472 
images (E) creation of lower and upper face δ-images databases (F) eigenfaces analysis, and (G) 473 
classification. Our classification algorithm utilizes supervised learning, and its main challenge is the need 474 
of a labeled dataset for training. Likewise, to generalize between species, a parameter fine-tuning should 475 
be performed on the new species dataset. This requires a sample labeled set of the new species images. 476 
The other manual operations are rather simple and not time consuming. They include a choice of neutral 477 
frames and annotation of seven landmark points on a mean neutral image of a video. 478 

Interestingly, unlike the within-Rhesus classifications, the generalization between species required a 479 
larger number of components (explained variance) for classification of upper face AUs than for lower 480 
face AUs. This might suggest that a separate set of parameters should be fine-tuned for each dataset and 481 
ROI (lower and upper face). On the other hand, our findings show that tuning parameters for 482 
generalization within Rhesus subjects, might suffice also for across-Rhesus-subjects generalization. 483 
Further, and somewhat surprisingly, the across-species generalization performed better than within- and 484 
across- Rhesus-subjects generalizations. One possible explanation is that unlike in the Rhesus dataset, the 485 
Fascicularis dataset had better conditions for automatic coding, as its videos were well-controlled for 486 
angle, scale, illumination, stabilization, and occlusion. This finding has an important implication, as it 487 
shows that training on a large natural set of behaviors in less-controlled videos (Fig. 3-1), can be later 488 
used for studying neural substrates of facial expressions in more controlled environments during 489 
electrophysiology (Livneh, Resnik et al. 2012, Pryluk, Shohat et al. 2020). 490 

A direct comparison to performance of human AUs-recognition systems is not straightforward. The 491 
systems designed for humans are highly variable, due to differences in subjects, validation methods, the 492 
number of test samples and the targeted AUs (Sariyanidi, Gunes et al. 2015). In addition, some human 493 
datasets are posed, possibly exaggerating some AUs while our macaque datasets are the results of 494 
spontaneous behavior. Automatic FACS achieve great accuracy (>90%) in well-controlled conditions, 495 
where the facial view is strictly frontal and not occluded, the face is well illuminated, and AUs are posed 496 
in a controlled manner (reviewed by Barrett, Adolphs et al. 2019). When the recordings are less 497 
choreographed and the facial expressions are more spontaneous, the performance drops, (e.g. 83% in 498 
Benitez-Quiroz, Srinivasan et al. 2017). Our MaqFACS recognition system performed comparably with 499 
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the human automated FACS systems despite the spontaneous nature of the macaque expressions and lack 500 
of controlled settings for the filming of Rhesus dataset.  501 

We showed that our method can be used to add detail and depth to the analysis of neural data recorded 502 
during real-life social interactions between two macaques. This approach might pave the way toward 503 
experimental designs that capture spontaneous behaviors that may be variable across trials rather than rely 504 
on perfectly repeatable evoked responses (Krakauer, Ghazanfar et al. 2017). A departure from paradigms 505 
that dedicate less attention to the ongoing brain activity (Pryluk, Kfir et al. 2019) or internal state patterns 506 
(Mitz, Chacko et al. 2017) will increase our ability to translate experimental finding in macaques to 507 
similar finding in humans that target real-life human behavior in health and disease (Adolphs 2017). 508 
Specifically, this will allow internal emotional states and the associated neural activity that gives rise to 509 
observable behaviors to be modeled and studied across phylogeny (Anderson and Adolphs 2014). Indeed, 510 
a novel study in mice reported neural correlates of automatically-classified emotional facial expressions 511 
(Dolensek, Gehrlach et al. 2020). Finally, this system could become useful for animal-welfare assessment 512 
and monitoring (Descovich, Wathan et al. 2017, Carvalho, Gaspar et al. 2019, Descovich 2019, reviewed 513 
by McLennan, Miller et al. 2019) and in aiding the 3R framework for the refinement of experimental 514 
procedures involving all animals (Russell, Burch et al. 1959).  515 

Given that macaques are the most commonly used non-human primate species in neuroscience, an 516 
automated system that is based on facial action units is highly desirable and will effectively complement 517 
the facial recognition systems (Loos and Ernst 2013, Freytag, Rodner et al. 2016, Crouse, Jacobs et al. 518 
2017, Witham 2017) that address only the identity but not the behavioral state of the animal. Compared to 519 
the recently introduced method for facial expressions recognition in Rhesus macaques (Blumrosen, 520 
Hawellek et al. 2017), our system does not rely on complete stereotypical and frequent facial expressions, 521 
rather, it classifies even partial, incomplete, or ambiguous (mixed) and infrequent facial expressions, 522 
given by combination of action units. Although our system requires several manual operations, its main 523 
potential lies in automatic annotation of large datasets after tagging an example set and tuning the 524 
parameters for the relevant species or individuals. We prototyped our system on six action units in two 525 
facial regions (upper and lower face) but more advanced versions are expected to classify additional 526 
action unit combinations, spanning multiple regions of interest and tracking action units as temporal 527 
events. Further refinement of our work will likely include additional image-processing procedures, such 528 
as object tracking and segmentation, image stabilization, artifacts removal and more advanced feature 529 
extraction and classification methods. These efforts will be greatly aided by large, labeled datasets, are 530 
emerging (Murphy and Leopold 2019) to assist ongoing efforts of taking cross-species and translational 531 
neuroscience research to the next step.  532 
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Figure 1. Motivation for using automatic MaqFACS to analyze facial expressions 714 

 715 

 716 

 717 

A. The stereotypical facial expressions in macaque monkeys include the ‘neutral’, ‘lip-smacking’, 718 
‘threat’, ‘alert’ and ‘fear grimace’ expressions (Altmann 1962, Hinde and Rowell 1962).  719 

B. Some of the facial expressions that monkeys produce during the experiments that require head 720 
immobilization match the stereotypical expressions produced during natural behaviors (for 721 
example, see the three images with blue frames on the left, correspond to the neutral, lip-smacking 722 
and threat expressions). We have also observed facial expressions that were less frequently 723 
described in the literature (two images with yellow frames on the right). 724 
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C. A comparison between the neutral and lip-smacking facial expression shows that the lip-smacking 725 
example contains AU1+2 (Brow Raiser) in the upper face, AU25+26+18i (Lips part, Jaw drop and 726 
True Pucker) in the lower face, and EAU3 (Ear Flattener) in the ear region.  727 

D. The proportion of each upper face AU in the Fascicularis data (FD) test set. Bars with the solid 728 
outline (first three highest bars) represent the most frequent AUs, which were chosen for the 729 
analysis in this work. 730 

E. Same as (D) but for lower face. First five most frequent AUs were chosen for the analysis.  731 

F. Proportion matrix of AU combinations in the FD test set, for the most frequent AUs. Cells inside 732 
the magenta (bottom left) and green frames (top right) represent the combinations of upper face and 733 
lower face AUs, correspondingly. AUs that frequently occurred in combination with other AUs (in 734 
the upper face or the lower face, separately) are denoted by “+”. Cell values were calculated as the 735 
ratio between the number of frames containing the combination of the two AUs and the total frames 736 
number containing the less frequent AU.  737 

G. Left: images of upper face AUs from the FD test set. UpperNone: no coded action in the upper 738 
face. AU1+2: Brow raiser. AU43_5: Eye closure. Right: the difference of the images from the 739 
neutral face image. 740 

H. Same as (G) but for lower face. AU25+26: Lips part and Jaw drop. AU25+26+16: Lips part, Jaw 741 
drop and Lower lip depressor. AU25+26+18i: Lips part, Jaw drop and True Pucker. 742 

 743 

  744 
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Figure 2. Monkey-intruder behavioral paradigm 745 

 746 

 747 

 748 

Monkey Intruder Block: The subject monkey sitting behind a closed shutter. The intruder monkey is 749 
brought into the room and seated behind the shutter, which remains closed. The shutter opens and closes 18 750 
times, and the monkeys are able to see each other while it is open. The subject monkey could not see any 751 
part of the intruder unless the shutter is open. At the end of the block, the shutter closes and the intruder 752 
monkey is taken out from the room. 753 

For examples of monkey interactions, see extended Figures 2-1, 2-2 and 2-3.  754 

 755 

  756 
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Figure 3. Diagram of the automatic MaqFACS AUs recognition system pipeline 757 

 758 

 759 

Alignment of frames from the original video stream (example of two videos from two different Rhesus 760 
Dataset (RD) monkeys. Seven landmark points were manually selected on the mean of all neutral frames of 761 
each video. In the next step, these points were mapped to corresponding predefined positions (reference 762 
landmarks, common for all videos). The resulting affine transformation for each video was then applied to 763 
all its frames. For more examples, see extended Figure 3-1.  764 

A. Manual definition of upper face and lower face ROIs on the mean of all neutral frames. Magenta: upper 765 
face ROI, green: lower face ROI. The “All neutral frames mean” image in this scheme was calculated from 766 
all RD videos. 767 

B. Cropping of all the frames according to upper face and lower face ROIs.  768 

C. Generation of δ-images by subtracting the optimal neutral frame of each video from all its frames. The 769 
contrast and the color map of the gray scale images were adjusted for a better representation.  770 

D. Construction of lower face and upper face δ-images databases, consisting of 2-dimensional matrices where 771 
each row corresponds to one image.  772 

E. Eigenfaces extraction from the training images and projection of the training and test images onto the 773 
eigenspace (following the desired training and test sets construction). ௉ܹ஼ଵ and ௉ܹ஼ଶ denote the weights of 774 
PC1 and PC2, correspondingly. 775 

F. Classification of the testing images to upper face and lower face AUs. KNN (and SVM) classification was 776 
applied based on the distances between the testing and the training images in the eigenspace.  777 

  778 
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Figure 4: Eigenfaces analysis 779 

 780 

 781 

 782 
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A. Example of eigenfaces: six first eigenfaces (PCs) of one of the upper face training sets, containing all five 783 
Rhesus subjects from RD. The grayscale values were normalized to 0-1 range and the image contrast and 784 
color map were adjusted for a better representation. The color bar corresponds to pixel grayscale values. 785 

B. Same as (A) but for lower face. 786 

C. Example of the information coded by the first two eigenfaces.  787 

Top: the image sequence demonstrates the first eigenface from (A), added to the mean image (MeanImg) 788 
and varied. The middle image is the mean image of the training set (described in A), with the first eigenface 789 
added after being weighted by its mean weight (ݓഥ௉஼ଵ). In each sequence, the weights were varied from - 790 
3SD to +3SD from the mean weight, and the weighted PC was then added to the mean image of the training 791 
set. This procedure resulted in a different facial image for each 1SD step. The images in the sequence are 792 
ordered from left to right: the first image contains the variation by -3SD (i.e. PC1 weighted by -3SD of its 793 
weights and added to the middle image), and the last one is the variation by +3SD. 794 

Bottom: same as top but for the second eigenface (PC2). The image sequence is ordered from bottom to 795 
top.  796 

The grayscale values were normalized to 0-150 range and the image contrast and color map were adjusted 797 
for a better representation. The color bar corresponds to pixel grayscale values, and is mutual for both top 798 
and bottom schemes.  799 

D. Same as (C) but for lower face and with grayscale normalization to range 0-100. 800 

E. Example of decision surface for upper face KNN classifier, trained for generalization across species. The 801 
training set is the one described in (A) and the test set is Fascicularis monkey D frames from FD. The 802 
decision surface is presented along the first two dimensions – weights of PC1 and PC2 (ݓ௉஼ଵ and ݓ௉஼ଶ, 803 
correspondingly). Each colored region denotes one of the three upper face AU classes. The frames in color 804 
are training set images and the gray-scaled ones are from the test set. The classification decision is based on 805 
the test frames’ proximity to samples of a certain class in this compressed subspace.  For better illustration, 806 
the images shown here are frames after alignment, but before the neutral frame subtraction.   807 

F. Same as (E) but for the lower face and Fascicularis monkey B from FD test set. 808 

 809 

  810 
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Figure 5: Results – parameters selection and model performance 811 

 812 

 813 

A. Top: example of parameter selection for upper face KNN classifier, trained for generalization across 814 
species. The training set in the example is the one described in fig. 4(A), the test set is monkey D frames 815 
from FD and the distance metric is set to be Euclidean. The surface represents the performance of KNN 816 
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classifiers with two parameters varied: k (number of nearest neighbors, varied from 1 to 12), and the 817 
percentage of the training set variance explained by the eigenfaces (“pcExplVar”, varied from 50% to 818 
95%). Z-axis is the average sensitivity value of each model (i.e. average of the sensitivity values for the 819 
classification of three upper face AUs). The red dot denotes the highest point on the surface and hence the 820 
parameters yielding the best performance. With the selected parameters k=2 and pcExplVar = 93% the 821 
model average sensitivity value is 0.86.  822 

Bottom: Same as on top but for the lower face. The training set is one of the lower face training sets, 823 
containing all five Rhesus subjects from RD, and the test set is monkey D frames from FD. The distance 824 
metric is set to be Euclidean. The selected model has the average sensitivity of 0.84 with the parameters: 825 
k=9 and pcExplVar = 60%. 826 

B. The curves demonstrate the number of the eigenfaces that should be used to cumulatively capture a given 827 
percentage of the dataset variance. The red asterisk denotes the pcExplVar parameter value selected in (A).  828 

Left: the curve corresponds to the dataset described in (A) top. To express 93% of the dataset variance, at 829 
least 264 vectors (eigenfaces) should span the eigenspace. Right: same as left but regarding (A) bottom. To 830 
express 60% of the dataset variance, at least 15 vectors (eigenfaces) should span the eigenspace. 831 

C. Best performance of KNN classification for each generalization type. Each bar group contains five bars 832 
(from left to right): three bars describing the classifier’s sensitivity for single AUs; sensitivity averaged for 833 
three classified AUs; and the total accuracy of the classifier. The mean and the error are calculated 834 
regarding the recognition performance on a new subject. The horizontal dashed line denotes the chance 835 
level. 836 

The first bar group demonstrates the results for generalization of the classification within the same Rhesus 837 
subject (Within Subject (Rhesus): training on videos of a subject and testing on a new video of the same 838 
subject).  839 

The second group shows the generalization performance of a classifier to new Rhesus subjects (Across 840 
Subjects (Rhesus): training on videos from several subjects and testing on videos of a new subject). The 841 
blue lines denote the performance of the classifier across subjects using the parameters selected in Within 842 
Subject (Rhesus) case. 843 

The third group displays the generalization performance to new Fascicularis subjects (Across Species: 844 
training on videos from several Rhesus subjects and testing on videos of a new Fascicularis subject). In this 845 
case, the parameters should be tuned for each Fascicularis subject, and the results are the mean 846 
performance of two parameter sets (for the two Fascicularis subjects).  847 

Top: performance for upper face. Bottom: performance for lower face. 848 

D. Averaged confusion matrices of the KNN best performance results (of the three cases presented in (C)). 849 
The columns in each matrix represent the true labels, and the rows stand for the predicted labels.  850 

Top: upper face confusion matrices. Bottom: lower face confusion matrices.  851 

For Confusion matrix of interrater variability, see extended Figure 5-1. 852 

E. Example of the KNN classification performance demonstrating correctly recognized frames along with 853 
some recognition errors. Each data point denotes a frame in a video. The classified AUs (magenta and 854 
green lines) are shown in comparison to the ground truth labels (the black lines). Video time is displayed in 855 
the X-axis. Sample frames of the original video stream (after alignment and ROI cropping) are shown 856 
above the lines. The video for the example is taken from FD. 857 

Top: output example for upper face video. Bottom: output example for lower face video. 858 

  859 
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Figure 6: Examples of the Method Applications 860 

 861 

 862 
 863 

A. Example of the final system output for monkey B from FD. Classification labels are presented on the Y- 864 
axis, while the frame time of the video-stream is on the X. “Other_upper” and “other_lower” labels are for 865 
video frames that were not part of the task of the classifier but exist in the original video and were labeled 866 
manually. Frames of the original video (with no preprocessing) are shown on the bottom and the dashed 867 
lines denote their corresponding timing. The magenta and green lines demonstrate the outputs from the 868 
upper face and lower face algorithms, respectively. Images above the output lines exhibit the frames as they 869 
were processed in the algorithm, after alignment and ROI cropping. The estimated locations of the ROIs, 870 
comprising the full facial expressions, are illustrated in frames on the bottom by magenta and green 871 
rectangles (the positions are not precise since the original images on the bottom are not aligned). 872 
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B. Facial expressions analysis following frames classification. Bars demonstrate the proportion of a specific 873 
facial configuration monkey B (from FD) elicited during one block of the experiment described in fig. 2. 874 
This value is calculated as the ratio between frames containing the AUs combination and the total frames, 875 
per trial. Yellow bars denote the block part when the intruder monkey enters and exists the room, the blue 876 
one is for phases with the closed shutter (after the first shutter opening and before its last closure), and the 877 
orange bars stand for periods of open shutter. An example image of the analyzed expression is shown on 878 
the right (taken from the examples in B). 879 

Top: proportions of cooing facial expression events comprised of UpperNone AU for the upper face and 880 
AU25+26+18i for the lower face. Bottom: same as in top, but for “alert” facial expression – AU1+2 and 881 
AU25+25 in the upper face and lower face, correspondingly.  882 

For analysis following classification by human coders, see extended Figure 6-1a. 883 

** represents p<1e-2, *** represents p<1e-3  884 

C. Same as (A) but for monkey D from FD.  885 

D. Same as (B) but for monkey D from FD and lip-smacking facial expression with upper face AU1+2 and 886 
lower face AU25+26+18i.  887 

For analysis following classification by human coders, see extended Figure 6-1b. 888 

E. PSTHs and raster plots of one neuron in the amygdala and one in the ACC, temporally locked to the 889 
socially-associated AU25+26+18i, during monkey intruder block. 890 

 891 

  892 
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Table 1: Data under-sampling (RD) 893 

Upper Face 894 

 AU1+2 AU43_5 UpperNone Undersampled per 
class 

Total 
balanced 
training set 

#frames 1213 ~19,500 ~150,000 1213 3639 
 895 

Lower Face 896 

 AU25+26+16 AU25+26+18i AU25+26 Undersampled 
per class 

Total 
balanced 
training set 

#frames 310 ~15,000 ~15,000 310 930 
 897 

In the upper face, the smallest category was AU1+2 with only 1213 frames (in total, from all RD subjects). On the 898 
contrary, AU43_5 category had around 19,500 frames (after eliminating RD AU45 frames due to time 899 
synchronization errors), and UpperNone class included over 150,000 images. Consequently, balanced training sets 900 
were generated each including all the AU1+2 frames, and randomly selected 1213 frames from AU43_5 along with 901 
1213 randomly selected UpperNone frames. Therefore, the upper face balanced training sets were comprised of 902 
3639 frames each. The same was done for the lower face, where the smallest category was AU25+26+16 with only 903 
310 frames. Categories AU25+26+18i and AU25+26 contained over 15,000 images each. Accordingly, each lower 904 
face balanced training set included 930 frames. 905 

  906 
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Figure 2-1: Lip-smacking interactions 907 

 908 

 909 

 910 

Examples of dynamics and progression of lip-smacking interactions captured during the monkey-intruder 911 
experiment, where the subject monkey is the first to initiate the movement. Each sequence demonstrates sample 912 
frames of the Fascicularis subject D with his head fixed (first row), along with the corresponding frames of the 913 
intruder Fascicularis monkey (second row). The subject monkey D was filmed using the facial camera (Materials 914 
and Methods). The intruder monkey was filmed using another monitoring camera, from the direction of the subject 915 
monkey and through the opened shutter (hence the reflections on the screen). The time presented relative to the first 916 
frame in the sequence, which starts with a neutral expression of the subject monkey. Yellow arrows indicate the 917 
change in the movement of brows, ears and lips at the onset of the lip-smacking movement (for the subject and the 918 
intruder monkeys) and the offset of the movement (for the intruder monkey). 919 

In the example: sequence with intruder monkey B. 920 

  921 
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 922 

Figure 2-2: Lip-smacking interactions 923 

 924 

 925 

Same setup as in Fig. 2-1, but with intruder monkey P. 926 

  927 
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Figure 2-3: Lip-smacking interactions 928 

 929 

 930 

 931 

Same setup as in Fig. 2-1, but with intruder monkey N. 932 

 933 

 934 

  935 
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Figure 3-1: Motivation for alignment 936 

 937 

Seven reference landmark points (yellow, predefined and common for all videos) displayed on sample neutral 938 
frames of original video streams.  939 

A. Sample neutral frames from five different videos of each of the five Rhesus monkeys (K, L, M, Q, R).  940 
B. Sample neutral frames from one video of Rhesus monkey K. 941 

C. Sample neutral frames of the two Fascicularis monkeys (D and B). 942 
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Figure 5-1: Confusion matrix: interrater variability 943 

 944 

 945 

 AU43_
5 

Upper
None 

AU1+2 AU1+2
+43_5 

Other 
Upper 

AU25
+26 

AU25+
26+18i 

Other 
Lower 

AU25+26
+16 

AU43_5 96% <1% 0 0 0 0 0 0 0 
Upper 
None

<1% 81% 6.2% 0 6.1% 0 0 0 0 

AU1+2 3% 18.9% 92.3% 12.5% 6.1% 0 0 0 0 
AU1+2+4
3_5

<1% 0 <1% 87.5% 0 0 0 0 0 

Other 
Upper

0 <1% 1% 0 87.8% 0 0 0 0 

AU25+26 0 0 0 0 0 87.5
% 

0 3.1% 2.6% 

AU25+26
+18i

0 0 0 0 0 1.4% 100% <1% 0 

Other 
Lower

0 0 0 0 0 10% 0 95.5% 33.8% 

AU25+26
+16

0 0 0 0 0 1.1% 0 1.3% 63.6% 

 946 

 947 

Confusion matrix for the interrater variability between two experienced human coders, for a video from FD. “Other 948 
Upper” and “Other Lower” represent all the upper-face and lower-face labels which were not part of the task of the 949 
automatic classifier.   950 

  951 
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a. Monkey B from FD 994 
b. Monkey D from FD 995 
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Extended Data 1 999 

The archive “autoMaqFACS_code.zip” contains Matlab code for autoMaqFACS classification.  1000 














