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ScienceDirect
The amygdala plays a central role in emotion and social

behavior, yet its role in processing social and affective touch is

not well established. Longitudinal studies reveal that touch-

deprived infants show later in life exaggerated emotional

reactivity related to structural and functional changes in the

amygdala and other brain structures. The internal organization

and connectivity of the amygdala is well-suited to process the

sensory features of tactile stimuli and also the socio-cognitive

dimensions of the received touch. The convergent processing

of bottom-up and top-down pathways that carry information

about touch results in the elaboration of context appropriate

autonomic responses. Indeed, the positive value of affective

touch in humans and social grooming in non-human primates is

correlated with vagal tone and the release of oxytocin and

endogenous opioids. Grooming, the non-human primate

equivalent of affective touch in humans, reduces vigilance, that

depends on the amygdala. During touch-induced vagal tone

and low vigilance, neural activity in the amygdala is

substantially different from activity corresponding to the

attentive processing of tactile stimuli. Under these

circumstances neurons no longer respond phasically to each

touch stimulus, rather they signal a sustained functional state in

which the amygdala appears decoupled from monitoring the

external environment.
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Introduction
One of the many functions of the amygdala is to detect

emotionally and socially salient stimuli, evaluate their

momentary significance, and coordinate the most appro-

priate somatic and autonomic changes in response to these

stimuli. We start from the premise that social and affective
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touch is almost always salient and the amygdala is expected

to process these stimuli. We hypothesize that instead of

extracting the sensory features of touch stimuli, the amyg-

dala extracts or processes more abstract overtones of touch,

such as the mental state elicited in the receiver by affective

touch, as indexed by vagal tone and the levelof vigilance. In

this perspective article, we review findings that suggest a

role of the amygdala in processing affective touch and

present evidence from ongoing studies that the amygdala

responds to the mental state elicited by touch stimuli and

not by the stimuli per se.

A century ago, J.B. Watson, the founder of the behaviorist

school of thought, discouraged parents from affectionately

holding their babies and hugging their toddlers [1]. Instead

of affectionate touch, behaviorists suggested verbal praise,

punctuated by occasional handshakes, and pats on the head

as rewards for good behavior. Parents judiciously ignored

these prescriptions. However, orphanages across the world

implemented them with disastrous and irreversible con-

sequences. The ‘failure to thrive’ of institutionalized chil-

dren has been attributed to emotional neglect and the

absence of affective touch [2–4]. Indeed, the lack of affec-

tive touch during early development derails normal devel-

opment of the social brain, leaving individuals unable to

establish lasting emotional bonds later in life [5]. These

changes appear to be irreversible because affectionate care

and extra enrichment provided by the adoptive parents of

children neglected and abused in the notorious Romanian

orphanages in the 1980s did not reverse the brain abnor-

malities acquired early in life [6,7�].

It appears, therefore, that physical contact with a caretaker

through affective touch during early development lays

down the neural foundation for normal emotional reactivity

and regulation [8��]. Adolescents who were institutional-

ized during infancy showed increased emotional reactivity

associated with persistent hyperactivity of the amygdala

and enhanced amygdala connectivity with the prefrontal

cortex [9,10��]. The amygdala itself plays a central role in

emotional reactivity [11�] by setting in register the per-

ceived or expected emotional significance of stimuli with

autonomic activation [12,13]. It is possible that affective

touch modifies activity within the amygdala or modifies

neural communication between the amygdala and other

brain areas, leading to downregulation of emotional reac-

tivity though vagal mechanisms [14].

Beyond its role in emotional development, the amygdala

coordinates emotional behavior throughout adulthood.
www.sciencedirect.com
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Affective touch is fully integrated into our adult emo-

tional vocabulary, allowing us to receive and understand a

rich variety of emotional signals through our skin [15].

Adults can also experience the negative physical and

emotional effects of touch deprivation. Social distancing

during the Covid-19 pandemic brought to light our ‘touch

hunger’ that shaped the negative experience across age

groups [16,17]. Despite the significance of touch in shap-

ing our social and emotional experiences, the specific

neural processes in the amygdala that transform particular

types of tactile inputs into a social and emotional experi-

ences are just beginning to come to light.

The amygdala processes multiple dimensions
of touch
It is only recently that subsets of neurons in the non-

human primate amygdala have been shown to clearly

respond to tactile stimuli [18,19]. It remains unclear,
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however, what aspects of tactile stimuli these neurons

respond to and whether they respond to the positive

valence associated with affective touch. Intracranial

recordings and neuroimaging studies in humans and

non-human animals have converged on the idea that

the amygdala responds differentially to the positive or

negative valence/value of both non-social and social

stimuli [20,21]. However, neurons in amygdala also

respond to neutral or ambiguous stimuli, to novelty, to

alerting stimuli, and even to abstract constructs

[reviewed in Ref. 22��].

Indeed, most neurons in the amygdala are tuned to

multiple dimensions of a stimulus and/or of the ongoing

behavior [22��,23��]. For example, neurons in the amyg-

dala that respond to touch also respond to visual and

auditory stimuli [19] and to the production of facial

expressions [18,24] that activate the mechanoceptors in
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the facial skin. It is unclear, however, whether these

neurons respond to the same viewed and produced facial

expressions, as in the canonical mirror neuron system [25].

Furthermore, multidimensional neurons in the amygdala

often respond to apparently random combinations of

features [26]. For example, in monkeys, the same neurons

respond to the magnitude of rewards received and to the

social status of familiar conspecifics [27] or to combina-

tions of task-related vigilance, face identity, and reward

amount [28]. In humans, the same neurons have been

shown to encode both novelty and the identity of visual

stimuli [29].

It is also possible that tactile-responsive neurons in the

amygdala signal the context in which social touch occurs,

or some other aspects of ongoing behavior — a question

that we are actively investigating. Based on more exten-

sively explored sensory domains, it is expected that

neurons in the amygdala signal the pleasantness/unpleas-

antness of touch as a function of the relationship between

the receiver and the person who delivers the touch, the

autonomic state of the receiver, and even the recipient’s

expectations. Indeed, Ellingsen et al. [30�] argued that all

these factors contribute to the hedonic value of social

touch that emerges through the convergence of bottom

up and top-down mechanisms.

The connectivity of the amygdala is ideally
suited for processing multiple aspects of
touch
The amygdala, by virtue of its nuclear organization and

the connectivity of each nucleus, is ideally suited for

convergent processing of the physical and the socio-

emotional dimensions of tactile signals. The lateral

nucleus of the amygdala receives highly processed sen-

sory signals from secondary sensory and multisensory

association areas of the temporal and parietal cortices

(Figure 1) [31]. Affective touch that activates C-tactile

afferents is processed primarily by the insula [32], which

in turn is connected to the amygdala via multiple, bidi-

rectional processing loops [33,34�]. The output of the

lateral nucleus projects to the basal nucleus of the amyg-

dala (Figure 1) where it converges with inputs from the

prefrontal cortex [35].

The medial prefrontal cortex and the orbitofrontal cortex

(mPFC and OFC, Figure 1), in addition to responding to

the interactive aspects of social stimuli [36,37], also signal

social rules and norms [38]. In the tactile domain, strong

cultural rules and taboos restrict the area of the body that

can be touched by others [39]. Thus, in the basal and

accessory basal nuclei (B and AB, Figure 1) of the amyg-

dala, the physical features of tactile stimuli (processed

initially in the lateral nucleus) can be combined with

higher-level evaluations of touch in the prefrontal cortex.

The outcome of this evaluation is likely broadcast from

the amygdala to a large array of targets that include
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primary and secondary sensory areas, association areas,

limbic cortical areas (such as the anterior cingulate cortex,

the insula, and the orbitofrontal cortex) and the auto-

nomic centers in the brainstem and hypothalamus via the

central nucleus (C, Figure 1) [40]. The amygdala regu-

lates sympathetic, parasympathetic, and endocrine

responses via the connections from the central nucleus

to distinct hypothalamic nuclei and to autonomic centers

in the brainstem. The projections to the brainstem also

target the locus coeruleus, the dorsal raphe, and the

ventral tegmental area, the main sources of monoamines

in the brain.

There are two main types of cortical projections from the

basal (and accessory basal) nucleus. One targets emotion-

ally relevant cortical areas, establishing several parallel

loops that carry out multiple functions [41]. The other

projects to various stages (both association and primary

cortices) of sensory processing. Such connectivity may

explain the presence of valence-dependent modulation in

even early stages of cortical sensory processing. This has

been best demonstrated in the visual domain. For exam-

ple, in macaques, multiple areas of the temporal visual

cortex respond differentially to aggressive and friendly

facial expressions [42]. Lesions of the amygdala, however,

eliminate this valence effect, leaving face detection and

face discrimination intact [42]. It is possible, therefore,

that the responses in primary somatosensory cortex to the

pleasantness of touch or the hedonic value of a caress from

an attractive person of the opposite sex [43] are due to the

activity of neurons in the basal nucleus that project to the

primary sensory areas [40,44]. Such neural activity in the

basal nucleus may not induce detectable hemodynamic

changes in the amygdala itself. Indeed, focal, near-infra-

red stimulation restricted to a subnuclear region in the

basal nucleus of anesthetized monkeys, causes significant

increases in the BOLD signal in multiple sensory areas

without an equally large activation in the amygdala itself

[45�].

The basal and accessory basal nuclei also project to the

central nuclei of the amygdala either directly or via the

intercalated nuclei [46]. The central nuclei are part of an

autonomic network that coordinates bodily responses to

stimuli of importance [47]. It is likely that the elevated

vagal tone in response to affective touch in humans is

initiated by the central nucleus of the amygdala [14]. This

conjecture gathers momentum if we consider that

through the central nuclei, the amygdala is looped into

the interoceptive circuit of the brainstem and the insula

[48��] and may contribute to the coordinated mind-body

states elicited by affective touch [49��].

The anatomically favorable position of the amygdala for

the convergence of pathways that transmit physical and

affective dimensions of touch is borne out by empirical

data. Despite the challenges of reliably detecting BOLD
www.sciencedirect.com
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signal in the amygdala [50,51], a few neuroimaging stud-

ies showed robust activation of the amygdala in response

to affective touch. When the amygdala was activated by

pleasant tactile stimuli, the BOLD signal was correlated

with the perceived pleasantness of touch [52], likely

because pleasurable tactile sensations activate the opioid

system within the amygdala [53]. A subset of studies

showed affective touch enhanced the functional connec-

tivity between the amygdala and limbic cortical areas. For

example, pleasant touch in humans elicited enhanced

functional connectivity of the insula and amygdala with

medial prefrontal areas [54]. Likewise, pleasant touch,

but not painful stimuli, elicited coordinated activity

between the anterior cingulate cortex and a region corre-

sponding to the extended amygdala [55].

Context dependence of touch processing in
the amygdala
The subjective value of social touch partially depends on

the identity of the toucher. Indeed, the BOLD signal in

the amygdala of human subjects differentiates between

touch received from a bonded partner or a stranger of

opposite sex [56��]. This confirms that top-down, higher-

level social evaluation of touch is processed by the

amygdala, in this case, the relationship between the

toucher and the receiver [39]. The pleasantness of social

touch also depends on social context. Support for this

comes from studies that combine touch with other social

signals such as facial expressions. Seeing smiling faces, for

example, enhanced the perception of pleasant touch

while seeing negative facial expressions potentiated the

perception of unpleasant touch [57]. Faces and facial

expressions are processed in the amygdala [58], so it is

not surprising that patients with amygdala lesions failed

to show enhanced detection of tactile stimulation when

viewing images of faces being touched (a phenomenon

reliably documented in healthy controls) [59�]. Such

findings suggest a capacity of the amygdala to integrate

social context into the processing of tactile information,

likely due to the rich connectivity and multidimension-

ality of its component neurons [22��,23��,28,60].

Grooming in nonhuman primates is equivalent
to affective touch in humans
Many species of non-human primates build and maintain

social bonds through reciprocal grooming. Grooming is

often traded for coalition support, infant handling, and for

tolerance at feeding and drinking sites [61]. Macaque

monkeys solicit grooming by ‘groom presenting’ (offering

access to body parts) to a trusted social partner. They

often lie in front of the groomer, adopt positions that

expose vulnerable body parts to the groomer’s hands and

teeth, close their eyes, and appear fully relaxed [62]. They

may fall asleep, relinquishing attention and vigilance to

the trusted groomer. Some species of macaques invest

15–20% of their daily activity in social grooming, which

exceeds hygienic needs, but pays off during social conflict
www.sciencedirect.com 
when grooming partners support each other [63]. The

hedonic value of grooming is illustrated by the observa-

tion that animals readily perform a monotonous and

repetitive operant task in exchange for grooming [64].

Indeed, grooming received by macaques from trusted

human trainers has comparable physiological effects to

grooming from conspecifics, including decreased sympa-

thetic and increased parasympathetic (vagal) activity,

indexed by lower heart rate and increased heart rate

variability [65�]. Many of the beneficial effects of groom-

ing are related to the release of oxytocin that suppresses

the effects of cortisol and reduces reactivity to psychoso-

cial stressors [66,67].

The pleasantness of grooming may be related to the

release of endorphins [68–71] perhaps triggered by acti-

vation of C-tactile fibers in the skin that respond to

particular patterns of affective touch [72]. The physio-

logical effects of grooming in macaques match the effects

observed in humans: pleasant touch increases vagal tone,

thereby reducing the negative effects of stress [14]. In

addition to autonomic changes, stress-reducing effects

manifest through measurable behaviors, such as the relax-

ation of the facial corrugator muscle that is typically

contracted during negative affective states [73]. Neural

recordings from the amygdala of macaque monkeys that

receive social grooming, as we are presently carrying out,

are expected to reveal some of the cellular underpinnings

of affective touch. The amygdala is expected to signal

valence (pleasant or unpleasant), social context, auto-

nomic state, or other, more abstract variables. These

expectations are justified by previous studies in the visual

domain carried out in both our and other laboratories.

Affective touch links the amygdala to
attention and vigilance
We have recorded neural activity simultaneously from the

amygdala and somatosensory cortex of macaques in

response to alternating blocks of non-social and social

tactile stimuli (Martin et al. Soc Neurosci Abstr, 2021,

P317.04). Social stimuli were grooming-like finger sweeps

to the monkey’s face delivered by a trusted human.

Gentle airflow delivered to multiple regions of the face

that avoided the eyes, nostrils, and the ears served as

innocuous non-social stimuli. Grooming induced signifi-

cant decreases of heart rate confirming that being touched

by a human groomer was pleasant. Indeed, the subjects

often closed their eyes and appeared to fall asleep. During

blocks of non-social tactile stimulation, heart rate was

significantly elevated compared to the blocks of groom-

ing. As expected, neurons in the somatosensory cortex

responded to both non-social and social stimuli, differen-

tiating between location and contact pressures. Consis-

tent with our previous studies [18,19], approximately 30%

of neurons in the amygdala responded to non-social

tactile stimuli. Contrary to our expectations, however,

<10% of those amygdala neurons that responded to the
Current Opinion in Behavioral Sciences 2022, 43:46–53
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non-social stimuli responded to social touch, even when

the social touch was delivered with comparable pressure

and to the same areas of the skin. Furthermore, virtually

no amygdala neurons responded selectively to social

touch.

The failure of neurons to respond to social touch, suggests

a gating mechanism, possibly related to the vagal tone

induced by grooming. Indeed, the small fraction of neu-

rons that responded to both social and non-social touch

were recorded in sessions when the heart rate remained

high across the blocks. During these predictable periods

of grooming, neurons in the amygdala did not respond to

each grooming sweep. Rather, they appeared to signal a

long-lasting (seconds to minutes) internal state induced

by grooming. Taken together these findings suggest that

neural activity in the amygdala may be decoupled from

monitoring the external environment to monitoring an

internal state that has clear autonomic correlates. This

phenomenon of gating phasic responses of the amygdala

may have not been reported previously because during

typical experiments of neural recordings from the amyg-

dala, animals remain vigilant and engage with stimuli that

carry emotional or behavioral significance. In response to

grooming, however, we observe the opposite, a temporary

disengagement of the amygdala from discrete incoming

stimuli. This new finding should not be interpreted as a

failure of the amygdala to respond to affective touch. On

contrary, these tonic signals associated with internal state

seem more pervasive and robust than responses to brief

visual, auditory, or innocuous tactile stimuli.

One explanation for the suppression of episodic neural

responses to grooming may be that the animal’s senso-

rium is no longer oriented outwardly, as the responsibility

of monitoring the environment for potential danger is

transferred to the groomer. Indeed, the amygdala plays a

pivotal role in vigilance and attention [74] and shows

enhanced, almost automatic facilitation of attention for

threat-related stimuli [75,76]. Accordingly, vigilance and

apprehension are correlated with high gamma oscillations

in the amygdala that entrain and increase the spiking

activity of the resident neurons [77��]. It may be that,

during periods of positive social contact, the amygdala

tonically signals to the rest of the brain the safety of this

behavioral context while enhancing activity in the para-

sympathetic branch of the autonomic nervous system.

While the amygdala is broadly known for the ‘fight or

flight’ response, it may play an equally important role in

coordinating vagal states. The significant and persistent

elevation of heart rate in monkeys with bilateral amygdala

lesions [78�] suggest the loss of vagal mechanisms that

slows spontaneous heart rate. In light of these observa-

tions, it is not surprising that individuals deprived of

affective touch have increased sympathetic reactivity to

emotional stimuli and poor emotional regulation

[6,7�,8��,9,10��].
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Future directions
In a broader framework, the sustained (rather than phasic)

changes in amygdala activity elicited by grooming, and

probably affective touch in humans, can be interpreted as

a shift of processing priority from exteroception to inter-

oception. Affective touch activates the C-tactile afferents

and this peripheral system seems aligned with interocep-

tive processing of pain, temperature, itch, and the general

status of internal tissues [79]. As such, the affective

motivational dimensions of touch may give rise to pro-

longed brain states, that do not show large moment-by-

moment oscillations [80] as would be expected from

discriminative touch. The amygdala is expected to be a

key site for the integration of information processed by

interoceptive and exteroceptive circuits as this is where

interceptive autonomic afferent activity intersects with

the neural representations of positive and negative value/

valence [81]. Indeed, the amygdala responds to intero-

ceptive signals and to external sensory stimuli of all

modalities and across the entire spectrum of valence

[22��,23��]. Pain also activates the amygdala [82] as the

ultimate stimulus that requires attention and conjures up

strong affective responses. In primates, the amygdala also

contributes to the evaluation of social information sig-

naled by bodies, faces, facial expressions, gaze direction,

eye contact, social status, and the observed or expected

behaviors of social partners [22��]. The amygdala pro-

vides, therefore, a fertile ground to explore the cellular

basis of the homeostatic integration of interoception with

the multitude of other functions it performs.

A major challenge for future research will be to determine

the cellular mechanisms by which affective touch alters

the output of the amygdala to enable positive emotional

states. If the mechanism for this change is a shift from

exteroceptive to interoceptive processing, it will be

important to explore the extension of sympathetic and

vagal pathways beyond the brainstem, into areas such as

the amygdala, insula, anterior cingulate, and medial pre-

frontal cortex. These structures are known to process the

emotional significance of stimuli and to generate affective

states that regulate and govern emotional and social

behavior. It is highly likely that these region’s evaluation

of stimuli (and the ensuing behaviors) depends not only

on the external features of stimuli but also on the internal

state of the organism. Where and how the majority of

interoceptive signals are processed and how they factor

into cognitive and affective brain states remains to be

brought to light.

Conclusion
In conclusion, the amygdala may play multiple, comple-

mentary roles in affective touch. When the subject is

vigilant and engaged in a task, the amygdala may signal

the sensory and affective dimensions of touch, including

pleasantness and social variables. These signals are

detectable during typical experimental settings wherein
www.sciencedirect.com
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the subjects are rarely fully relaxed. If, however, the

receiver feels safe, and can relinquish vigilance and

attention to the social partner, the amygdala may cease

processing the exteroceptive touch stimuli and shifts

processing toward interoceptive signals.
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Našel C, Moser E: fMRI measurements of amygdala activation
are confounded by stimulus correlated signal fluctuation in
nearby veins draining distant brain regions. Sci Rep 2015,
5:10499.

52. Chen Y, Li Q, Zhang Q, Kou J, Zhang Y, Cui H, Wernicke J,
Montag C, Becker B, Kendrick KM et al.: The effects of intranasal
oxytocin on neural and behavioral responses to social touch in
the form of massage. Front Neurosci 2020, 14:589878.

53. Nummenmaa L, Tuominen L, Dunbar R, Hirvonen J, Manninen S,
Arponen E, Machin A, Hari R, Jääskeläinen IP, Sams M: Social
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73. Mayo LM, Lindé J, Olausson H, Heilig M, Morrison I: Putting a
good face on touch: facial expression reflects the affective
valence of caress-like touch across modalities. Biol Psychol
2018, 137:83-90.

74. Davis M, Whalen PJ: The amygdala: vigilance and emotion. Mol
Psychiatry 2001, 6:13-34.

75. LeDoux J: The amygdala. Curr Biol 2007, 17:R868-74.
www.sciencedirect.com 
76. Vuilleumier P: How brains beware: neural mechanisms of
emotional attention. Trends Cogn Sci 2005, 9:585-594.

77.
��

Amir A, Headley DB, Lee S-C, Haufler D, Paré D: Vigilance-
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