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Abstract
Objective. Functional electrical stimulation (FES) involves artificial activation of skeletal muscles to
reinstate motor function in paralyzed individuals. While FES applied to the upper limb has
improved the ability of tetraplegics to perform activities of daily living, there are key shortcomings
impeding its widespread use. One major limitation is that the range of motor behaviors that can be
generated is restricted to a small set of simple, preprogrammed movements. This limitation stems
from the substantial difficulty in determining the patterns of stimulation across many muscles
required to produce more complex movements. Therefore, the objective of this study was to use
machine learning to flexibly identify patterns of muscle stimulation needed to evoke a wide array
of multi-joint arm movements. Approach. Arm kinematics and electromyographic (EMG) activity
from 29 muscles were recorded while a ‘trainer’ monkey made an extensive range of arm
movements. Those data were used to train an artificial neural network that predicted patterns of
muscle activity associated with a new set of movements. Those patterns were converted into trains
of stimulus pulses that were delivered to upper limb muscles in two other temporarily paralyzed
monkeys.Main results. Machine-learning based prediction of EMG was good for within-subject
predictions but appreciably poorer for across-subject predictions. Evoked responses matched the
desired movements with good fidelity only in some cases. Means to mitigate errors associated with
FES-evoked movements are discussed. Significance. Because the range of movements that can be
produced with our approach is virtually unlimited, this system could greatly expand the repertoire
of movements available to individuals with high level paralysis.

1. Introduction

Current attempts to restore limb function follow-
ing spinal cord injury (SCI) rests on four main
strategies: surgical reconstruction—often involving
tendon transfers from non-paralyzed to paralyzed
muscle [1], repair the injury using a variety of neuro-
protective and neuroregenerative agents including
cell transplantation [2–6], artificially enable move-
ment with powered exoskeletons [7–9], or activate
paralyzed muscles, either by exciting spinal circuits
below the level of the lesion [10–19] or by dir-
ectly stimulating motor axons innervating muscle

[20, 21, 22–25]. Therapeutic approaches, such as
movement training [11, 26–29] and sustained elec-
trical stimulation spanning (and upstream) of the
injury site [30–33] have also been used effectively to
enhance recovery in SCI, presumably by promoting
axonal outgrowth [30] and synaptic plasticity [34].
Most of these approaches have focused on reinstat-
ing patterned rhythmical movements of the legs (or
hindlimbs) for locomotion. The challenges associ-
ated with attempts to restore upper limb function
are more significant, given the inordinate mechan-
ical and coordinative complexity, episodic nature,
and abundant variety of arm movements. As such,
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functional electrical stimulation (FES), involving
excitation of motor axons with implanted electrodes
[20–25] provides the only feasiblemeans to selectively
control individual muscles needed to enact a wide
array of motor behaviors of the arm and hand.

Despite its promise, the total number of tetra-
plegics who have benefited from such FES is mea-
ger (<300 [22]) compared to ∼250 000 new cases of
SCI-related tetraplegia each year worldwide [35, 36].
Paradoxically, one reason underlying such limited use
of upper limb FES is the restricted range of motor
behaviors that can be elicited with these systems.
Indeed, a key barrier to more versatile control of FES
is identifying the complex spatio-temporal patterns
of muscle stimulation needed to evoke a large reper-
toire ofmovements. To overcome this limitation, here
we usemachine learning to predict patterns ofmuscle
stimulation needed to evoke a wide range of complex
movements in paralyzed upper limbs. We show that
for some cases, evoked movements matched desired
trajectories with good accuracy. However, substantial
errors were evident in others, the causes of which are
explored.

2. Methods

An overview of our approach that combined four
sequential stages is depicted in figure 1(A). In stage
1, we recorded limb kinematics and the associated
electromyographic (EMG) signals from 29 upper
limb muscles (supplementary table 1) using chronic-
ally implanted intramuscular electrodes (figure 1(B))
while a monkey made a variety of arm move-
ments (figure 1(C)). The recorded EMG signals
(figure 1(D)) were rectified, low pass filtered, and
normalized to the peak value detected within a
recording session (figure 1(E)). Kinematics included
three-dimensional (3D) positions, velocities, and
accelerations of hand and elbow relative to the
shoulder, and pitch, roll, and yaw angular orient-
ations, velocities, and accelerations of the hand.
These signals were then used as inputs to train a
machine-learning algorithm (an artificial neural net-
work (ANN), stage 1, figure 1(A)) that character-
ized the relationship between kinematics and muscle
activity. In stage 2 (figure 1(A)), the trained ANNpre-
dicted muscle activity associated with a new set of
desired movements not included in the training set.
In stage 3, predicted patterns of muscle activity were
transformed into stimulus pulse trains. In stage 4, the
stimulus pulses were delivered tomuscles through the
implanted electrodes to evoke upper limbmovements
in two other implanted ‘test’ monkeys that were tem-
porarily paralyzed (i.e. under general anesthesia). We
used different ‘trainer’ and ‘test’ monkeys because
paralyzed humans would not be able to provide the
signals needed to train such an ANN. The details of
these stages are given below.

2.1. Surgical procedures
All procedures complied with guidelines for the
use of non-human primates in research and was
approved by the institutional animal care commit-
tee. Under isoflurane anesthesia and sterile condi-
tions, three adult male monkeys (Macaca mulatta,
10–13.5 kg, ages 7–11 years) had 29 muscles chron-
ically implanted with intramuscular electrodes.
Because we were interested in movement of the hand
in 3D space and its orientation (pitch, roll, yaw),
any of the joints of the upper limb from the scap-
ula to the wrist could influence that motion. There-
fore, we attempted to implant all the muscles that
contribute significant torque at any of these joints.
The extrinsic finger muscles, while mainly causing
motion of the digits (not tracked in this study), also
contribute significant torque at the wrist joint. As
such, we also implanted those muscles. A total of
58 electrode leads (two for each muscle to enable
bipolar EMG recording), consisting of Teflon coated,
multi-stranded stainless-steel wires (Cooner AS633,
outside diameter 0.33 mm), were soldered to a 64-
channel electrode interface board (Neuralynx EIB-
36-16TT). The interface board was mounted within
a protective cylindrical encasement and the entire
implant was sterilized prior to surgery. In monkey
E (trainer monkey), the encasement was attached
to the exposed skull using dental acrylic anchored
to bone screws. This encasement ultimately failed
due to untreatable methicillin-resistant S. aureus
infection possibly secondary to cytotoxic effects of
the acrylic. In the other two monkeys (A and M,
test monkeys), we used acrylic-less implants [37], in
which titanium baseplates (figure 1(B), Gray Matter,
Inc.) with undersurfaces fabricated to conform to the
contours of the animals’ crania were mounted to the
skulls using titanium screws. The baseplates were then
allowed 6–8 weeks to osseointegrate before electrode
implantation surgery. The connector encasement was
then secured with screws to a footprint in the base-
plate during the implant surgery.

Leads originating from the encasement were
routed posteriorly under the skin on the back of
the skull to an incision between the scapulae. A
ground/return electrode (1 cm diameter) was tucked
into a subcutaneous pocket at this incision site
(figure 1(B)). Electrode leads (identified by a four-
band color code painted on the distal ends) were
tunneled under the skin to incisions over target
muscles. A low impedance, insulated, tungsten elec-
trode was used to deliver brief trains of 40 Hz intra-
muscular stimuli (biphasic, 250 µs/phase, 1–3 mA)
to evoke muscle contractions and identify optimal
locations for implanting an electrode. The exterior-
ized lead was then cut to length, a small amount
of insulation was removed from the end of the lead
with a thermal wire stripper, and a gold anchor
(∼1 × 6 mm) was crimped to the lead. The anchor
consisted of a crimp terminal pin (3922 Mill-Max)
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Figure 1. (A) Steps involved in the approach. Stage 1: EMG and kinematics from voluntary movements are used to train an ANN.
Stage 2: the trained ANN is used to predict EMG signals associated with a new set of desired movements. Stage 3: predicted EMG
signals are converted into trains of stimulus pulses. Stage 4: stimulus pulses are delivered to muscles in temporarily paralyzed
monkeys to evoke movements. (B) Radiograph showing titanium plate on skull to which electrode-connector encasement was
mounted. Electrode bundle emerged posteriorly from encasement and was routed to a site between the scapulae. From there,
electrodes (two electrodes/muscle) were tunneled to target muscles where gold anchors were attached and inserted into target
muscles. Disk over spinous processes is an implanted ground/return electrode. (C) Small segment (∼30 s) of hand trajectory
(measured relative to shoulder location, sampling rate 120 Hz) used for training artificial neural network (ANN). (D) Raw EMG
signals recorded during the movement shown in (C) from 29 muscles that act primarily on the digits of the hand, wrist, elbow,
shoulder, and scapula. Acronyms of muscles defined in supplementary table 1. (E) Rectified, lowpass filtered, and normalized (to
peak EMG recorded in a session) representations of the signals shown in (D). These signals were used in the training of the ANN.
All traces shown on the same normalized scale.
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with the pin removed. Anchors were used to increase
shear friction and surface area to help prevent elec-
trode migration. The anchor was then fed into the
opening of a custom-built insertion device that con-
sisted of a 14-guage needle with a narrow slot cut
along on the length through which the lead passed.
This device was then inserted alongside the tungsten
electrode that served as a guide before the tungsten
electrode was removed. Stimuli were then delivered
through the insertion device (fully insulated except
for the tip of the needle) using the same parameters
as used with the tungsten electrode to verify place-
ment before deploying the anchor with a plunger
pushed through the needle. The insertion device was
removed, and stimuli were then delivered through the
lead to the anchor to verify robust contraction in the
target muscle. This process was repeated for a second
electrode inserted into the target muscle∼1 cm away
from the other electrode, and then repeated for every
muscle. After closing incisions, and before recov-
ering the animal from surgery, the implanted arm
was immobilized. Immobilizationwasmaintained for
7–14 d to allow fibrous tissue to encapsulate elec-
trodes, helping to stabilize their placements [38].

2.2. Behavior
Prior to surgery, monkeys were trained to reach to
food morsels with their right arm while seated in
an open primate chair. The left arm was restrained
with Velcro straps. Monkeys initiated each reach with
their hand resting on a switch-instrumented start box.
When the hand was on the box, a tone played, indic-
ating to the monkey that a new trial could be initi-
ated. After 1–2 s with the hand on the start box, the
experimenter presented a small food morsel to the
monkey. The monkey grasped the morsel, brought
it to his mouth, and returned his hand to the start
position. On each trial, food morsels were positioned
at different locations within the reach space of the
monkey. To increase the types of armmovements, on
most trials the experimenter moved the food morsel
through a complex trajectory (e.g. see figure 1(C)).
Monkeys invariably tracked the position of the exper-
imenter’s hand with their hand and grasped the
morsel only when the motion of the experimenter’s
hand was halted. This tracking occurred without
contact between the monkey’s hand and the exper-
imenter’s hand. During the grasping phase, touch
between themonkey and the experimenter’s handwas
avoided (asmuch as possible) tominimize unaccoun-
ted contact forces. Monkeys readily performed this
task for 15–30 min until sated. These procedures were
repeated over several sessions during which EMG and
kinematic data were recorded. Data sampled in these
sessions were used to train the ANN.

2.3. Kinematics and EMG
Electromagnetic sensors (Polhemus) were used to
record (120 Hz/channel) six degrees-of-freedom

(x, y, z positions, and roll, pitch, and yaw orienta-
tions) motion of the right hand and elbow. Small
sensors (0.7 cm × 0.5 cm × 0.5 cm) were attached
with elastic wrap to the back of the hand and lateral
elbow, and with tape to the shoulder. The shoulder
was used to represent the origin of a reference frame
for measuring hand and elbow positions. An addi-
tional sensor was placed on the opposite shoulder to
account for trunk rotations.

To record EMG activity, lightweight cables were
attached to the connectors within the skull-mounted
encasement. These cables were routed to a set of four
eight-channel differential amplifiers (Neuralynx).
EMG signals were amplified at a gain of 1000, band-
pass filtered from 100–475 Hz, and digitally sampled
at ∼3000 Hz per channel using a computerized
data acquisition system (Spike2). Timing pulses gen-
erated by the Polhemus system were recorded by
the data acquisition system to enable synchroniza-
tion of kinematic with EMG data. In addition, the
switch signal from the start box was recorded and
used to indicate when the limb was in the start
configuration.

2.4. Signal processing
In off-line processing (MATLAB, Mathworks), EMG
signals were full-wave rectified, low-pass filtered
(3 Hz), and down-sampled to 120 Hz/signal to
match kinematic data. EMG amplitude was nor-
malized to the maximum value recorded during a
session. We refer such processed EMG signals as
‘activation’. 3D coordinates of the hand and elbow
were lowpass filtered (6 Hz), calculated with respect
to the right shoulder location, and normalized to arm
length. Hand orientation data were converted from
yaw-pitch-roll angular representations to quaternions
to remove rotational discontinuities. Velocities and
accelerations were obtained through differentiation
(and double differentiation) of position and orient-
ation data using finite difference methods.

2.5. ANN
We used ANNs to predict activation patterns from
kinematics [39, 40]. The structure of the ANN used
here was a multilayer perceptron involving a feed-
forward network created in the Neural Networks
Toolbox ofMATLAB. Inputs to the network were kin-
ematic signals (3D positions, velocities, and acceler-
ations of hand and elbow relative to the shoulder,
and pitch, roll, and yaw angular orientations, velocit-
ies, and accelerations of the hand) and outputs were
the activation signals of the 29 muscles. The network
was fully connected such that in every layer, all neural
units received the outputs from units involved in the
previous layer. The network possessed one hidden
layer with 50 units. A tan-sigmoid was used as the
activation function for each neural unit. In the out-
put layer, all units were fully connected to all outputs
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using a linear activation function. Network initial-
ization was done with random weights and biases.
Training used resilient backpropagation with gradi-
ent descent, momentum weight, and bias learning
functions. Mean squared error was used as the per-
formance function. Training data were obtained from
one session for each monkey and included 8 min
of concatenated complex reaches to food morsels
(see section 2.2 above). Data obtained while mon-
keys were at rest in the start position were excluded.
As shown in supplementary figure 1, increasing the
amount of training data beyond∼6 min yielded little
improvement in predictions.

2.6. Data analysis—prediction of activation from
kinematics
Nine trials from each of the two test monkeys (A
and M) were selected to test the ability of the trained
ANNs to predict activation patterns from kinemat-
ics. These test movements were selected from many
trials to be generally representative of the complex-
ity, duration, and reach space explored across tri-
als. These trials were not used in the training of the
ANNs. The kinematics associated with these trials
served as inputs to two ANN: that trained on data
from the same monkey (within) and that trained
on data obtained from a different monkey (mon-
key E) (across). Predictions of activation patterns for
all 29 muscles were compared to the actual activ-
ation patterns recorded during the test movements
using two measures: coefficient of variation (R2) and
the root mean squared error (RMSE—percentage of
peak activation). Accurate predictions have R2 value
approaching one and RMSE values approaching zero.

2.7. Conversion of activation to stimulation
In broad terms, to use activation signals as templates
for FES, they need to be converted into trains of stim-
ulus pulses that replicate (to a reasonable degree)
the active states of the muscles. The magnitude of
isometric force provides a good indicator of muscle
active state [41]. Therefore, the relationship between
stimulation intensity and evoked isometric force was
first determined for each electrode. As detailed below,
once those were determined, they were readily trans-
formed into relations between stimulus intensity and
activation (normalized EMG) because activation var-
ies as a near linear function of isometric force for
many muscles [42–44]. Time-varying activation sig-
nals associated with desired movements were then
converted into pulse trains with pulse amplitudes
modulated based on the identified relations between
stimulus intensity and activation. This approach to
convert activation signals into stimulus pulse trains
has previously been shown to accurately reproduced
complex patterns of torque and displacement for a
simple joint system [45].

Predicted activation signals (based on training
data obtained both from the same and different mon-
key) and the actual activation signals for the nine
test trials were transformed into amplitude modu-
lated trains of 40 Hz stimulus pulses (biphasic, cath-
odic phase leading, 250 µs/phase). Forty-Hz stimuli
were used because force-frequency curves obtained in
themonkey indicated that this is the lowest frequency
that produces near maximal force with minimal force
fluctuations [46]. The somewhatwide duration of our
pulses (250 µs/phase) was used because our stimu-
lator had an upper current limit of 32 mA. Wider
pulses enabled larger pulse areas (i.e. greater charge)
to be delivered to ensure maximum forces could be
evoked in the target muscles.

The relation between stimulus intensity and
evoked isometric force was obtained using a pre-
viously described approach [46]. Monkeys were
sedated in their home cage with ketamine HCl
(10–15 mg kg−1 IM). Atropine (0.04 mg kg−1 IM)
was given to reduce hyper-salivation common with
ketamine sedation. Carprofen (2.2 mg kg−1 SQ)
was also given to reduce inflammation associated
with endotracheal intubation. An intravenous cath-
eter was placed in the saphenous or cephalic vein to
deliver lactated Ringers (5–10 ml kg h−1) to main-
tain hydration. Anesthesia was induced with isoflur-
ane via mask insufflation. Following induction, an
endotracheal tube was inserted to maintain airway
patency and deliver anesthesia (1%–2% isoflurane
in 100% oxygen, ∼1 l min−1). An esophageal ther-
mometer measured core temperature and was main-
tained at ∼36.7 ◦C via a forced warm air blanket,
bubble wrap, and blankets placed over the torso.
Heart rate, respiratory rate, electrocardiogram, SpO2,
end-tidal CO2, and non-invasive blood pressure were
monitored throughout the experiment.

Monkeys were placed into a modified infant car
seat in a seated position. A neonatal cervical collar
was used to maintain the head in an upright position.
The cervical collar was secured to the car seat with
cable ties. Straps situated midway between the neck
and shoulder and across the torso secured the animal
to the chair. An isometric transducer (JR3) was fixed
to the wrist/hand, forearm, and upper arm to record
the 3D components of evoked isometric forces asso-
ciated with muscles acting on each of those segments.
Limb segments proximal to the tested segments were
immobilized with Velcro straps.

Stimuli were delivered through the skull-
mounted connector to each electrode separately
using a programmable multi-channel stimulator
(STG4008, MultiChannel Systems). Stimuli were
single 500 µs biphasic rectangular pulses delivered
at 1 s intervals, from 0.2 mA to 2.0 mA in 0.2 mA
steps, then from 3 mA to 32 mA in 1 mA steps. We
used small increments of current at the low end of
stimulus intensities to ensure that we captured, with
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good resolution, the minimum current needed to
just evoke a contractile response. From our previous
work, such thresholds typically occur between 0.2 and
2.0 mA. We used single stimuli and evoked twitches
rather than responses to tetanic stimulation to reduce
the time monkeys were under anesthesia and min-
imize the possibility of fatigue. Previous work has
shown that the normalized relation between stimulus
intensity and force is practically the same for twitches
and tetanic responses [47]. For scapular, shoulder,
and elbow muscles, the return was the subcutaneous
disk electrode situated between the scapulae, while for
wrist and digit muscles, the other electrode situated
in the same muscle acted as the return.

In postprocessing (usingMATLAB), the force sig-
nals were bandpass filtered (0.05–20 Hz). The sig-
nal from a breathing sensor, worn during the experi-
ments, was used to trigger and average artifacts in the
force signals recorded during periods without stimu-
lation associated with respiration. This template was
then subtracted from the force signals, aligned to
each breath cycle during stimulation, to help remove
this artifact. Resultant twitch forces were visually
examined and the minimum current that elicited a
just noticeable response was identified. To identify
the maximum current, the lowest stimulus intens-
ity needed to achieve ∼95% of the maximum result-
ant force and which did not cause a clear change in
force direction (see section 3) was used as the upper
limit for stimulation. A logistic curve was fit to the
peak resultant forces between theminimumandmax-
imum currents. Because the relation between activa-
tion and isometric force is practically linear for most
muscles [42–44], we substituted activation for force in
these logistic curves. For muscles that used the sub-
cutaneous disk electrode as the return electrode for
stimulation (i.e. scapular, shoulder, elbow), we selec-
ted the one electrode of the two whose data best fit
the logistic curve and that exhibited a reasonably wide
range of stimulus intensities over which force was
modulated. The inverse of the logistic curve identi-
fied for the selected electrode (or for the bipolar pair
in forearm muscles) was then used to convert activa-
tion at each time sample into the associated amplitude
of biphasic current pulses running at 40 Hz. Stim-
ulus pulses associated with actual, within-predicted,
and across-predicted activation patterns for the nine
test movements were stored in computer memory for
later playout.

2.8. Electrical stimulation to evoke movements
As described above (section 2.7), test monkeys were
sedated and secured in an infant car seat for exper-
iments to evoke movements in the paralyzed upper
limb. The unrestrained implanted arm was instru-
mented with Polhemus movement sensors, and the
hand was placed in a position like the start position
for voluntary reaching. A custom MATLAB script
controlled the playout of stimulus patterns associated

with predicted and actual activations of 29 muscles
using four, eight-channel programmable stimulators
(STG4008, MultiChannel Systems). To help minim-
ize fatigue and enhance the strength of three shoulder
muscles (anterior, middle, posterior deltoids) cru-
cial for the types of movements involved, we used
two independent sources of stimulation, one arising
from each of the two electrodes implanted in those
muscles, as has been done previously [46, 48]. Prior
to delivery of stimuli associated with the test move-
ments, brief trains of stimuli were delivered separ-
ately to each muscle to verify evoked responses in
the target muscles. In one monkey, one of the two
implanted anterior deltoid electrodes produced only
weak responses to strong stimulation. Therefore, in
each stimulation session in this monkey, we inser-
ted a percutaneous, temporary, hook-wire electrode
into anterior deltoid to serve as the second source of
stimulation.

In each of five sessions, 27 stimulus patterns (nine
test movements × three sources of activation signals
[actual, within-, across-predicted]) were delivered to
the paralyzed upper limb and the evoked movements
recorded. About 1 min of rest was provided between
trials. The order of stimulus patterns was varied
across sessions. At least one week separated consec-
utive sessions for each monkey and these experi-
ments were initiated 18–22 weeks following the ini-
tial implant surgeries in the two monkeys. RMSE and
R2 values were calculated for the x, y, and z positions
of the hand for each evoked movement relative to the
desired trajectory. In one session for each of the two
test monkeys, after completing the set of 27 stimula-
tion trials, one pattern was replayed ten times with
∼1 min between trials to evaluate the reliability of
stimulation. In addition, in one other session for each
of the testmonkeys, stimulus patterns based on actual
activation signals were shuffled such that stimuli were
delivered to randomly selected muscles rather than to
the targetmuscles. This was repeated nine times, once
for each test movement.

3. Results

The ability of the ANN to predict muscle activity
was evaluated for a set of desired movements recor-
ded from the two test monkeys. Nine representat-
ive movements were selected for each test monkey
(figure 2(A)) from a large set of movements recor-
ded in bothmonkeys. Each testmovement started and
ended with the hand resting on an instrumented start
box. Figure 2(B) shows examples traces of actual and
predicted normalized EMG signals (‘activation’) for
fourmuscles during the ninemovements in onemon-
key. Activation signals associated with each move-
ment (labeled 1–9 in figure 2(B)) are concatenated
for illustration purposes. Predictions based on ANNs
trained on data collected from the same subject
(within—green trace) and from the trainer monkey
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Figure 2. (A) Nine test movements for one monkey used to evaluate capability of machine learning to predict patterns of muscle
activity. Hand position relative to shoulder position (diamond) was sampled at 120 Hz and normalized to arm length (as shown
for movement 5). Color indicates time of movement, with time progressing from cool to hot colors. All movements began and
ended with hand on an instrumented start box. (B) Actual (red) and predicted (green—within subject ANN, blue—across subject
ANN) EMG (activation) signals in four proximal muscles for each of the nine test movements. (C) Mean (SD) R2 values between
actual and predicted activation signals. Two-way ANOVA significant for training data source (p < 0.001) and muscle group
(p < 0.001) but no interaction (p= 0.66). Holm-Sidak post-hoc analysis indicated that scapular, shoulder, and elbow muscle
groups had higher R2 values (p < 0.05) than wrist or digit muscle groups. (D) Mean (SD) root mean square error (RMSE)
between actual and predicted activation signals. Two-way ANOVA significant for training data source (p < 0.001) and muscle
group (p < 0.001) but no interaction (p= 0.13). Holm-Sidak post-hoc analysis indicated that RMSE for scapular muscle group
was greater (p < 0.05) than other muscle groups.

(across—blue trace) are compared to the actual activ-
ation signals (red trace).

For these proximal muscles (figure 2(B)), within
predictions were excellent, having large coefficient
of determination (R2) values (range 0.78–0.92) and
small RMSEs (range 2.9%–4.8% of peak activation).

In itself, such accuracy is remarkable, given the com-
plexity of the movements and muscle activity pat-
terns. Across predictions (blue traces, figure 2(B))
for these muscles were not as accurate but were
still quite good (R2 range 0.29–0.85, RMSE range
5.6%–9.2%). When averaged across both monkeys
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Figure 3.Mean activations of 16 example muscles obtained from three different monkeys (red: n= 8 trials, blue: n= 26 trials,
green: n= 22 trials) during the same task. Shaded regions indicate±1 SD. Monkeys started with their hand on a start box (rest,
upper left panel) then reached to a food morsel positioned inside a small opening of a barrier. The opening was about 3 cm in
diameter and was directly in front of the animal at eye level. After grasping the morsel, monkeys transported the food morsel to
their mouths, then returned their hands to the start box until the next food morsel was presented. Each phase of the movement
(periods between vertical dashed lines, see upper left panel) was first time normalized to the duration of that phase. Then, the
across-monkey averages of the actual durations (in seconds) for each phase were assigned to each. The overall average duration of
the entire task was about 2.4 s. During the ‘rest’ periods, monkeys tended to extend the elbow and adduct the arm to position the
hand correctly in the start box. While there were similarities in the patterns of muscle activities across animals, there were also
substantial intra-subject difference for this relatively simple task.

and all movements (figures 2(C) and (D))—within
predictions were significantly better than across, like
what has been reported previously for human subjects
[39, 40, 49, 50]. In addition, correlations between
actual and predicted activations (figure 2(C)) were
significantly greater for proximal muscle groups
(those mainly acting on the scapula, shoulder, and
elbow) than for distal muscles (those primarily oper-
ating at the wrist and digits). This likely reflects the
more direct involvement of proximal muscles in pro-
ducing the limb movements recorded in these exper-
iments. Interestingly, the RMSE was greater for scap-
ular than for other muscle groups (figure 2(D)). This
seems related to the higher overall activity levels for
scapularmuscles than othermuscles during the tested
movements (supplementary figure 2). In terms of
kinematic parameters used to train the ANN, only a
modest number (primarily those related to hand pos-
ition and velocity) were needed to obtain the best pre-
dictions (supplementary figure 3).

To gain a better understanding of the relatively
poor performance of the across-subject predictions of
activation, we simply compared actual activation pat-
terns across three monkeys during the same reaching
task. This task involved repeated reaches to the same
target location where the monkey grasped a small
food morsel, transported the morsel to the mouth,
and then returned the hand to the start box. The tar-
get location was positioned directly in front of the
monkey at roughly eye level. Our assumptionwas that
the patterns of muscle activity would be, for all prac-
tical purposes, the same for the three monkeys when
performing this task. Figure 3 shows mean activa-
tion traces (±SD) for 16 example muscles across the
three monkeys (different colors) for this task. Panels
are arranged with most distal muscles in the upper
left and progressing to the most proximal muscles in
the lower right of figure 3. Despite some clear sim-
ilarities in the patterns across animals, there were
also substantial differences. Such differences in EMG
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Figure 4. (A) Set up for identifying stimulus current range for each muscle electrode. Monkeys were sedated and secured upright
in an infant car seat. An isometric transducer was fixed to the wrist/hand (B), forearm, or upper arm to record the 3-dimensional
components of evoked isometric forces associated with muscles acting on each of those segments. Limb segments proximal to the
tested segments were immobilized with Velcro straps. (C) Example resultant twitch force responses in teres major and associated
(D) force vectors for stimulus pulses that incremented in amplitude in 0.2 mA steps from 0 to 2 mA and in 1.0 mA steps from
3–32 mA. The return electrode was a large subcutaneous disk between the scapulae (figure 1(B)). No responses were seen (blue
traces, (C)) until the stimulus amplitude reached 1.4 mA (min). Evoked responses then increased and had a consistent direction
up to a stimulus amplitude of 17 mA (max, bold line) whereupon the force vector began to change direction and showed a second
rise in magnitude (red traces, (C), (D)). Changes in force direction were attributed to the activation of nearby muscles. (E), (F)
Same as for panels (C) and (D) except for a different muscle, flexor carpi radialis. In this forearm muscle, both active and return
electrodes were situated within the muscle. In this case, little change in force direction was observed (F). The upper limit of
stimulus intensity (max) was identified as the lowest current that evoked∼95% of the maximum force (bold trace).

for a given task with nearly identical kinematics has
been reported previously both within [51] and across
[52–55] human subjects. Consequently, the poorer
prediction accuracy across subjects (figures 2(C) and
(D)) was likely due (in part) to the somewhat faulty
assumption that the same movement will be associ-
ated with the same patterns of muscle activities in dif-
ferent subjects.

Nevertheless, we converted both the within- and
across- predicted, and actual muscle activations asso-
ciated with the test movements into stimulus pulse
trains to be delivered to the implanted muscles in
anesthetized test monkeys. For the present applic-
ation, we used amplitude-modulated, biphasic cur-
rent pulses running at 40 pulses s−1. For each of

the 58 implanted electrodes (2 in each muscle),
we first needed to identify the range of stimulus
intensities that activated the target muscle without
exciting neighboring muscles. To do this, monkeys
were sedated and secured in a modified infant car
seat (figure 4(A)). A transducer was fixed to the
wrist/hand (figure 4(B)), forearm, or upper arm
to record the 3D components of evoked isometric
forces associated withmuscles acting on each of those
segments.

Single pulses were then delivered (1 pulse s−1)
in an incrementing fashion through each electrode
and the evoked twitches recorded. As examples,
figures 4(C) and (E) show the time-courses of the
resultant twitch forces at each stimulus intensity for
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teres major and flexor carpi radialis. Figures 4(D)
and (F) show the force vectors associated with the
peak resultant force at each intensity. For teres major
(figure 4(C)), evoked responses showed two phases,
that leading up to an initial plateau, and a subsequent
rise to a second plateau. Such intermediate plateaus
could be due to activation of distant nerve branches
within the same muscle [48, 56] or to activation of
neighboring muscles. To distinguish these possibilit-
ies, we examined the direction of the resultant force
vectors. As shown in figure 4(D), the direction of the
resultant force began to change for stimulus intens-
ities above 17 mA, which we attributed to excitation
of neighboring muscles. We used the largest stimulus
intensity prior to such changes in force direction as
the upper limit of stimulus intensity for each muscle.
Lower limits were discerned as the minimal current
that just evoked a noticeable response.

The muscles in the forearm are relatively small
and their stimulation can readily cause nearby
muscles to be activated. Furthermore, detecting
changes in force direction can be challenging, partic-
ularly for neighboring synergists. To address this, we
used bipolar stimulation in forearmmuscles (current
passing between active and return electrodes both
within the samemuscle) rather thanmonopolar stim-
ulation (current passing between active electrode in
muscle and the large return electrode between the
scapulae) used for larger, more proximal muscles.
This seemed to be an effective way to restrict cur-
rent spread and minimize activation of neighbor-
ing muscles. Figures 4(E) and (F) show an example
of such bipolar stimulation of a forearm muscle
wherein little change in force direction occurred up
through the maximum current delivered. In these
cases, we identified the lowest intensity needed to
achieve ∼95% of the maximum force as the upper
limit for stimulation (bold line, figure 4(E)).

For each electrode, the peak resultant force was
fit as a logistic function of stimulus intensity between
theminimum andmaximum current levels. Knowing
that the relation between EMG activity and isomet-
ric force is roughly linear, we substituted normalized
EMG (activation) for force in the logistic stimulus
intensity curves [45]. Then for each of the nine test
movements, actual and predicted (within and across)
activation signals for all muscles were transformed
offline into 40 Hz trains of stimulus pulses with cur-
rent amplitude modulated as an inverse logistic func-
tion of activation.

Then to test the degree to which the nine test
movements (different movements for the two mon-
keys) could be elicited artificially, both test mon-
keys were sedated in five sessions each and secured
to infant car seat. Their implanted arm was unres-
trained, instrumented with movement sensors, and
positioned similar to the start position during awake

reaching. The intramuscular electrodes were connec-
ted to a bank of programmable stimulators hold-
ing the stimulus pulse patterns for each test move-
ment associated with actual, within-predicted, and
across-predicted activation signals. Then in each ses-
sion, each stimulus pattern (nine movements× three
sources of activation) was delivered to the muscles
and the resulting movements recorded. The order of
stimulus patterns was varied across sessions.

A video depicting a test movement and the asso-
ciated evoked movement is shown in figure 5. The
evoked movement was smooth, complex (including
a lateral reach, followed by transport of the hand near
the mouth, and a return to start position), and gen-
erally captures the profile of the desired movement.
Figure 6(A) shows the set up for these experiments
and figures 6(B) and (C) show example trajectories
of a desired and evoked trajectories for a different test
movement. The time varying x, y, z positions of the
hand (relative to the shoulder) for this example are
depicted in figure 6(D). For this case, while the ver-
tical (z) dimension was reasonably well re-produced,
an initial lateral (positive y) displacement of the hand
during electrical stimulation led to clear differences
between desired and evoked trajectories in the first
half of themovement. Likewise, a posteriorly directed
(decreasing x direction) hand motion during stimu-
lation in the second half of the trial also led to not-
able error. As this example highlights, it could be that
even modest imbalances in muscle forces applied to
the unloaded limb may lead to significant displace-
ment errors.

When averaged across both test monkeys, all test
movements, and x, y, z directions, the average R2 val-
ues between evoked and desired trajectories were all
>0.3 (figure 6(E)). These were all significantly greater
than that associated with movements evoked by ran-
dom shuffling of the stimulus patterns such that each
muscle received a stimulus pattern designated for a
different muscle. Likewise, the RMSE was greater for
the shuffled trials than for the other trials (reach-
ing significance, however, only for the within and
across conditions). Such shuffling provides a reason-
ably stringent comparison as the underlying temporal
patterns were maintained and there were significant
correlations in activity patterns across muscles. Sur-
prisingly, there were no significant differences in the
accuracy of evoked movements across the three main
sources of activation (actual, within predicted, across
predicted). Therefore, despite substantial differences
in the quality of the activation predictions (figure 2),
evoked movements based on these predictions were
no worse than that using the actual activation sig-
nals. This implies that a dominant source of error was
that related to the fidelity with which delivered stim-
ulus pulses replicate the targeted active states within
muscles.
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Figure 5. Frame from video (in supplemental materials) depicting example evoked movement. Actual (desired) movement is
shown on the left and associated evoked movement, based on predicted activation patterns is shown on the right. The movies are
first shown in real time and then slowed down by 50%.

Figure 6. (A) Set up for evoking movements in anesthetized monkeys. Monkeys were secured upright in infant car seat with
implanted arm instrumented with movement sensors and free to move. Example set of stimulus pulses associated with actual
activation patterns recorded for one of the test movements. Only above threshold, cathodic phases (shown positive for illustration
purposes) of biphasic pulses are shown. All stimuli shown on the same scale. Example (B) desired and (C) evoked hand
trajectories for stimulus pattern shown in (A). Length of each scale bar represents 0.55 arm-length displacement. (D) Time
courses of desired and evoked hand displacement in x (anterior-posterior), y (medial-lateral), and z (vertical) directions for
examples shown in (B) and (C). (E) Mean (SD) R2 and RMSE values of evoked relative to desired movements, averaged across
two test monkeys, nine test movements, and five test sessions using actual and predicted (within and across) activations as
stimulus templates. Shuffled trials involved using actual activation signals but delivered to randomly selected muscles other than
the target muscles. One-way ANOVA showed a significant effect (p < 0.001) of activation source on R2, with shuffled trials
significantly less (p < 0.05 Dunn’s post-hoc method) than the other three. There was a significant effect of activation source on
RMSE (p < 0.001), with shuffled greater than within- and across-predicted (p < 0.05) but not actual.
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Figure 7.Within and across session variability in evoked movements. (A) evoked hand trajectories for ten repeated trials of one
test movement in monkey A and (B) in monkey M. Trials were recorded within the same session with about 1 min rest between
trials. (C) evoked hand trajectories for one test movement recorded in five separate sessions in monkey M. Cold colors indicate
early trials, warm colors later trials. Diamond indicates shoulder location. Axes are set up as shown in figure 2(A), except shown
in absolute rather than normalized units.

Some insight into the nature of those errors
can be obtained by examining trajectories evoked
by repeated delivery of the same stimulus pattern.
Figure 7(A) shows hand trajectories elicited upon
ten repeated trials in one session in one monkey.
In this case, the evoked movements were consist-
ent across trials. Despite this reliability, <50% of the
variability in the desired movement was accounted
for in the evoked movement (R2 = 0.45 ± 0.02,
mean ± SD). This implies that there existed system-
atic errors in the conversion of activation signals into
desired muscle contraction with electrical stimula-
tion. There can be several sources of such errors. For
example, the relation between stimulus intensity and
evoked force was obtained at one limb configuration
only. However, as joint angles change during move-
ment, the effectiveness of stimulation can vary due
to changes in the distance between the electrode and
motor nerve branches within a muscle [57]. Also,
maximum stimulus intensity, identified as that which
evoked maximal force prior to activation of other
muscles (figure 4), was mapped to the peak EMG
detected during a recording session. Such peak EMG
values, however, may not actually reflect the maximal
activation of the muscle, as implied in our mapping.

As shown in figure 7(B), we also encountered less
reliable responses to repeated stimulation within a
session. In this case (obtained in the other monkey),
there was a progressive reduction in the extent of
movement with repeated trails, likely due to mount-
ing muscle fatigue. A key muscle involved in these
upper limb movements is the anterior deltoid, which
supports the arm’s weight against gravity. To enhance

the magnitude of evoked forces and to help minimize
fatigue, we used two electrodes in this muscle as inde-
pendent stimulus sources [46, 48]. Perhaps due to
non-optimal electrode placements, stimulation may
not have been effective in enlisting the full comple-
ment of muscle fibers in anterior deltoid (and other
muscles). In such a case, muscle loads are carried by a
smaller fraction ofmuscle fibers thanwould normally
occur, increasing the susceptibility to fatigue.

Variability in evoked responses across sessions to
the same stimulation pattern could also be substan-
tial (figure 7(C)). It might be that small differences
in initial conditions (such variations in body position
or starting configuration of the limb) contributed to
such variability. Indeed, remounting an animal in a
test apparatus within a session has previously been
shown to cause significant changes in isometric forces
in response to nerve cuff stimulation [58]. It is also
possible that changes over time in electrode position
and degree of tissue encapsulation may have con-
tributed to across session variability. However, our
experiments involving evoked movements occurred
at least 18 weeks following implant surgery, well past
the∼8weeks needed for stimulating electrodes to sta-
bilize physically and electrically [58].

Finally, it is important to point out that monkeys
underwent repeated sessions of general anesthesia to
induce upper limb paralysis in these experiments.
Previously we showed in two other monkeys that
underwent 13 and 15 sessions of such general anes-
thesia that no adverse events occurred in any of
the sessions [46]. Evoked maximum isometric forces
of arm muscles in that study were similar across
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sessions. Those animals, as well as those in this study,
recovered within ∼45 min following cessation of
anesthesia, exhibiting fully coordinated movements,
eating and drinking. The animals remained healthy
throughout the entire testing period and showed no
long-term effects of repeated anesthesia. As such,
this method can reasonably be used to repeatedly
and safely evaluate aspects of FES delivered with
percutaneous or chronically implanted electrodes in
macaque monkeys.

4. Discussion

Here we have shown that machine learning can be
used to predict EMG signals associated with com-
plex upper limb movements with reasonable fidelity,
particularly for proximal muscles. When using such
predicted (or actual) activation signals as stimula-
tion templates, evoked movements matched desired
trajectories well in some cases. As a proof a prin-
ciple, these results demonstrate that such an approach
could provide a flexible means to stimulate large
numbers of muscles needed to produce a wide range
of upper limb movements in paralyzed individuals.

Oftentimes, however, the evoked movements
only moderately matched desired movements. Addi-
tional developments, therefore, are needed to reduce
errors before such an approach could be implemen-
ted in paralyzed human patients. Systematic errors
and those leading to trial-by-trial and across-session
errors could be addressed in different ways. For sys-
tematic errors, one promising approach might be to
use the evoked movements (rather than those pro-
duced during voluntary movements) and the asso-
ciated stimulation patterns (rather than EMG sig-
nals) to train machine learning algorithms [59]. In
this way, the algorithms would directly learn the
relation between stimulation and movement, effect-
ively bypassing errors associated with stage 3 shown
in figure 1(A). Furthermore, this approach would
be tailored to the idiosyncrasies of electrode place-
ments and the particular deficits of each SCI indi-
vidual (such as those associated with muscle atrophy,
joint stiffness, etc). Nevertheless, initial stimulation
patterns based on actual EMG patterns recorded in
healthy subjectswould provide amore efficientmeans
to obtain the needed training data than using arbit-
rary stimulation for this approach. This is because it
would use activity patterns already identified by the
central nervous system as natural solutions as to how
multiple muscles are activated in the elaboration of
complex movements.

For trial-by-trial and session-by-session errors,
such as those due to fatigue, unexpected perturba-
tions, and unaccounted body/limb position changes,
it seems crucial to combine on-line feedback control
[12, 60, 61] with the open loop control system used
here. A significant challenge for feedback control in

the present context, however, is enacting real-time
adjustments over large numbers of muscles based
on sensed discrepancies between actual and desired
trajectories.

It is also important to recognize that predict-
ing muscle activity patterns associated with free arm
movements, as we did here, represents only one gen-
eral type of motor behavior that tetraplegics would
hope to have re-instated. Indeed, the major motor
deficit in most tetraplegics relates to inadequate con-
trol of the hand and fingers. Restoration of complex
behaviors to the hand and fingers with FES is a sig-
nificant challenge because of the many small muscles
and movement degrees of freedom. Nevertheless, we
believe that the general approach taken here could
provide a framework for that application. Also, the
practical utility of a system for controlling FES neces-
sitates that it predicts patterns of muscle stimulation
needed for manipulation and transporting objects in
the environment. Previously, we partly addressed this
issue and included grip force signals along with limb
kinematics to predict muscle activation when human
subjects moved loads of different masses held in the
hand through complex trajectories [40]. By including
grip force (as a proxy for object load) EMGprediction
was equally as good for tasks involving interactions
with external loads as for unloaded movements.

In addition, it is important to consider how
a paralyzed individual would supply the desired
movement trajectory as the input to a trained FES
algorithm. The most notable approach would be to
identify intended movement trajectories from neural
recordings obtained through electrodes implanted in
the brain [62–70]. Alternatively, various non-invasive
approaches are being developed that enable indi-
viduals with high-level paralysis to convey movement
intentions to robotic arms e.g. [71–74]. Ultimately,
such signals representing intended motion could be
transformed into the appropriate patterns of muscle
stimulation using the approach described here to pro-
duce diverse movements in a paralyzed limb rather
than in a robotic device.

However, a feasible alternative to the approach
described here might be to use synergies to reduce
the dimensionality of the FES control problem. In
this way, users would directly control muscle stim-
ulation via a relatively small set of muscle synergies
[75, 76] or kinematic synergies [77] to enact a wide
array of movements [78, 79]. Furthermore, adopt-
ing a synergy-based approach might aid in identi-
fying optimal interactions among muscles [79]. In
practice, however, the synergy approach might nev-
ertheless be challenging for a user to control. Most
investigations indicate a minimum of three (and
typically more) dominant synergies are needed to
capture a significant proportion of the variance in
EMG [75, 76, 78, 79] or kinematic [77, 80] signals
recorded during a variety of motor tasks. As such,
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this would require users to simultaneously control
at least three separate channels (for example, via
myoelectric signals from retained muscles, if avail-
able), each modulating a different synergy to com-
mand FES to produce movements. But simultaneous
control over even two such command signals can
represent a substantial cognitive load. Users could
partially overcome this cognitive challenge by con-
trolling one synergy at a time [78, 81]—but this could
lead to jerky, inefficient, and robot-like motions.
Furthermore, muscle [78, 82] and kinematic [83]
synergies are surprisingly individual and may not
be readily transferable from an able-bodied sub-
ject (from whom the synergies would need to be
determined) to a paralyzed individual—a problem
like what we encountered here (figure 3), wherein
patterns of muscle activities could be markedly
different across subjects for ostensibly the same
movement.

The advantage of the approach described here
is that users would need only to supply informa-
tion related to the desired trajectory of motion. That
information would then be converted by a trained
algorithm into the patterns of muscle activity needed
to generate the trajectory. This would seem to be
a more intuitive approach than having to simultan-
eously control different muscle synergies. Indeed, it
is well established that populations of neurons in
the primate motor cortex appear to encode desired
movement trajectories e.g. [84–86], that can be used
effectively to control robotic arms via brain-machine
interfaces e.g. [62, 64]. If coupled to an FES sys-
tem like the one detailed here, such an integrated
approach might ultimately reinstate a wide range
of voluntary arm movements, accruing health bene-
fits associated with increased muscular activity, and
increasing independence and well-being in paralyzed
individuals.
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