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Abstract 
The amygdala responds to a large variety of socially and emotionally salient environmen-

tal and interoceptive stimuli. The context in which these stimuli occur determines their 

social and emotional significance. In canonical neurophysiological studies, the fast-paced 

succession of stimuli and events induce phasic changes in neural activity. During inter-trial 

intervals, neural activity is expected to return to a stable and featureless level of sponta-

neous activity, often called baseline. In previous studies we found that context, such as 

the presence of a social partner, induces brain states that can transcend the fast-paced 

succession of stimuli and can be recovered from the spontaneous, inter-trial firing rate of 

neurons. Indeed, the spontaneous firing rates of neurons in the amygdala are different 

during blocks of gentle grooming touches delivered by a trusted social partner, and during 

blocks of non-social airflow stimuli delivered by a computer-controlled air valve. Here, 

we examine local field potentials (LFPs) recorded during periods of spontaneous activ-

ity to determine whether information about context can be extracted from these signals. 

We found that information about social vs. non-social context is present in the local field 

potential during periods of spontaneous activity between the application of grooming and 

airflow stimuli, as machine learning techniques can reliably decode context from spectro-

grams of spontaneous LFPs. No significant differences were detected between the nuclei 

of the amygdala that receive direct or indirect inputs from areas of the prefrontal cortex 

known to coordinate flexible, context-dependent behaviors. The lack of nuclear specificity 

suggests that context-related synaptic inputs arise from a shared source, possibly intero-

ceptive inputs, that signal the physiological state of the body during social and non-social 

blocks of tactile stimulation.

Author summary
The amygdala responds to a large array of socially and emotionally salient stimuli, both 
external (e.g., affective or neutral touch) and internal (e.g., heart rate), and the context in 
which these stimuli are processed. It thus plays an important role in how social animals 
like primates interact. Recent work showed that individual cells in the amygdala carry 
contextual information during the periods between stimuli, characterized by spontaneous 
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baseline activity, i.e., socially significant interactions lead to detectable, persistent changes 
in activity in the amygdala. Here, we show that using modern machine learning tech-
niques, we can identify, during this period of spontaneous activity, context-related signals 
not only from the individual neurons but also from the collective activity of large groups 
of brain cells. As a central task of computational neuroscience is to identify cognitive 
states and their neural and behavioral correlates, this study hints at how contextual infor-
mation is encoded in the amygdala and contributes to the growing understanding of the 
potentials and pitfalls of machine learning methods in neuroscience.

Introduction
During natural engagement with the environment, the brain concomitantly processes 
specific stimuli pertinent to an event and the context in which the event occurs. Stimulus 
parameters, internal transformations, and the resulting behaviors can be decoded from the 
activity of ensembles of simultaneously active neurons, and local field potentials (LFPs). 
Decoding context, however, is challenging because in most experimental settings, context 
is unchanging and often conflated with stimulus-evoked neural activity. Context signaling 
is more likely confined to spontaneous activity during inter-trial periods, often referred to 
as baseline activity. The baseline or spontaneous activity of individual neurons and neural 
populations varies with the context. For example, when rats learned the probability of a 
predator interfering with their run toward a coveted reward, the spontaneous activity in the 
amygdala exhibits correlations with the likelihood of an encounter with the predator. While 
spontaneous firing rates vary in proportion to animals’ anticipatory anxiety, the predator- 
induced firing rates remain unchanged [1]. In a similar vein, when monkeys learn to associ-
ate odors with positive and negative outcomes, the spontaneous firing rate of neurons in the 
amygdala and anterior cingulate cortex retain information about the strength of the learned 
association during the time intervals between trials [2]. Beyond the amygdala and affective 
states, the spontaneous activity of neurons in the neocortex and the basal ganglia can retain 
information about the outcome of numerous preceding trials that contribute to predictions 
for upcoming trials [3]. Likewise, spontaneous neural activity in the marmoset prefrontal 
cortex preceding and following a perceived vocalization predict the likelihood of a recipro-
cating response [4].

It appears, therefore, that neural activity during periods of spontaneous activity might be 
fertile ground to explore how the brain integrates context and stimuli across multiple time 
scales, how it predicts – rather than reacts to – external events, and how it creates persistent 
affective states. Indeed, affective states, such as anxiety, persist longer than an emotional 
reaction to the stimuli that predict negative outcomes. (Affect refers to coordinated brain-
body states described by valence − pleasant or unpleasant − and arousal, i.e., a degree of 
engagement with the outside world [5]. Emotions are more complex mental states anchored 
to affect and often experienced as feelings.) We have recently demonstrated that grooming, 
the most common form of social and affective touch in macaques, elicits persistent changes in 
the spontaneous firing rate in 25–45% of neurons in the amygdala [6]. The observed changes 
in spontaneous activity were correlated with the animal’s physiological state (low sympathetic 
or high parasympathetic tone) and with the social context. The presence of the groomer near 
the monkey, even in the absence of grooming gestures, was sufficient to shift the spontaneous 
activity in the direction in which grooming would shift it. However, this study was focused 
on the spontaneous firing rates of individual neurons and left open the possibility that the 
LFPs, that represent the joint activity of neural populations at the mesoscale level, contain 
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comparable information about the brain state of the animal. This is significant because the 
presence of such information in the LFPs would indicate that contextual information is not 
just carried by select neurons but reflects a wider state change in the relevant circuitry. From 
an experimental point of view, LFPs are more robust than single units and less prone to pro-
cessing artifacts. In this paper, we examine the encoding of contextual information in LFPs 
recorded during the inter-trial period, focusing on two main questions.

First, we asked whether social context can be decoded from LFPs recorded from the 
amygdala during inter-trial intervals (spontaneous activity). The large fraction of neurons 
(25–45%) that showed context-dependent changes in spontaneous firing rates give rise to a 
specific covariance pattern across a population of neurons. That is, subsets of these neurons 
can be grouped together based on how they modulate their firing rates (e.g. suppressed, 
elevated, bursts, etc.) and the coactivity groupings of these subsets persists across repeated 
experimental epochs. Such covariance patterns have been detected in both single unit 
activity and LFPs [7] but only during engagement with a stimulus or a task parameter. We 
hypothesize that these coactivity patterns, which we sometimes refer to as “latent network 
dynamics,” are context-dependent, can persist across trials, and can be decoded from spon-
taneous activity.

Second, we asked whether there is a detectable difference in data recorded from different 
nuclei of the amygdala. We hypothesized that context-related activity will be most promi-
nent in the basal and accessory basal nuclei that receive more robust inputs from the  
prefrontal cortex than the lateral and central nuclei [8–11]. As the LFP in each nucleus (sub-
jected to common reference averaging to eliminate volume-conducted components), results 
from the synaptic currents received and summed across thousands of neurons [12,13], the 
LFP in the basal and accessory basal nuclei may be driven by inputs from the primate- 
specific areas of the prefrontal cortex that enable context-dependent, flexible emotional 
behaviors [14]. Alternatively, the context-related activity may arise from interoceptive 
inputs, signaling to the brain the parasympathetic-dominated physiological state observed 
during the grooming blocks [6]. Based on traditional anatomical studies in non-human 
primates, the interoceptive signals are transmitted to the amygdala both directly from the 
brainstem and via the insula [15,16]. The inputs from the brainstem and hypothalamus 
target primarily the central nucleus (as the central nucleus establishes reciprocal processing 
loops with autonomic effectors). The inputs from the insula target both the central nucleus 
and the nuclei of the basolateral complex. If the interoceptive signals are the primary driver 
of spontaneous activity, and these signals are more broadly distributed across the nuclei 
of the amygdala than prefrontal signals, we expect comparable spontaneous LFP patterns 
during the inter-stimulus periods in all nuclei of the amygdala. Note that we used the term 
“spontaneous” instead of “baseline” activity to distance ourselves from the idea that between 
the presentations of stimuli the brain returns to the same ‘contentless’ state, and that the 
content of brain states is related primarily to the organism’s engagement with external 
stimuli. Although the term “spontaneous” suggests ‘without apparent external cause’, these 
spontaneous brain states are likely to emerge from a combination of internal dynamics and 
context-related inputs from either the external or internal environment (e.g., the presence 
of a social partner and hunger respectively). Furthermore, internal dynamics can be biased 
by the physiological state of the body, which is typically signaled by interoceptive afferents 
to the brain areas of interest under scrutiny.

To detect contextual information in spontaneous LFPs, we use machine learning (ML) 
techniques in combination with a simple validation procedure. As the application of machine 
learning to neural data analysis is becoming widespread, we also consider factors that limit the 
applicability of ML methods in the context of our study.
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Results

1.  Experimental design
Three adult male macaques received, in alternating blocks of trials, two types of tactile stimuli: 
(1) a gentle airflow (not a startling air puff) with a pressure of 10 Pa delivered through airflow 
nozzles brought to the vicinity of the face, but avoiding the eyes and the nostrils, and (2) gen-
tle grooming sweeps delivered to the same areas of the face by a trusted human partner, who 
wore an instrumented glove that allowed matching of the contact forces of the airflow and the 
grooming sweeps (Fig 1). Linear electrode arrays (V-probes) with 32 recording contacts distrib-
uted across a span of 6mm from the tip were lowered into the amygdala. The 6mm-span ensured 
that we recorded LFP from the full dorso-ventral expanse of the amygdala. Unless some of the 
contacts had excessive noise or were located outside the amygdala (e.g., if probe tip was not 
advanced to the deepest point in the amygdala) we used the data from all contacts. However, this 
did not ensure equal sampling of each nucleus because each nucleus has a different location and 
different size. (A summary of the number of recording electrodes in each nuclei across all ses-
sions is reported in the Methods section.) Nevertheless, on each recording session the V-probes 
were lowered to different anterior-posterior and medial-lateral coordinates of the amygdala to 
enable quasi-equal sampling of all regions of the amygdala. The location of the recording elec-
trodes was determined through MRI reconstruction (Fig 1E). The contour of the nuclei (visible 
or estimated) was drawn on each 0.5mm-thick MRI slice. A grid in the recording chamber 
allowed targeting of specific nuclei in each slice. For example, a vertical probe insertion targeting 
the lateral nucleus (in yellow on Fig 1E) would omit the central nucleus, but during an insertion 
targeting the basal or accessory basal nuclei the uppermost contacts would likely land in the 
central nucleus (if, for example, the probe in Fig 1E was moved slightly to the left). As the probes 
were advanced into the brain, we listened and watched the changes in neural activity registered 
by each contact and verified that these changes occurred at the expected depths of traversing 
different structures (e.g., cortex, white matter, basal ganglia, anterior commissure, etc.). Based on 
the location of the top and bottom contact we then drew on the MRI slide corresponding to the 
anterior-posterior axis of the amygdala the position of each contact relative to the pre- 
established contour of the nuclei. The maximal margin of error was typically 0.5mm.

During grooming blocks, the heart rates of the subjects were significantly reduced com-
pared to airflow blocks, indicating a state of low sympathetic arousal (Fig 2A). Moreover, 
heart rate variability was increased during grooming, which is a reliable sign of a  
parasympathetic-dominated physiological state [17] (Fig 2B). Respiratory sinus arrhythmia 
(RSA), taken over 60s intervals, shows statistically higher strength during grooming than air-
flow in two of three subjects. (One-sided t-test: Monkey A, p = 0.0018, n=12 sessions; Monkey 
S, p < 0.001, n=8 sessions; Monkey C, p > 0.05, n=9 sessions.)

Each airflow sequence consists of 11 presentations of the stimulus to pseudo-random 
locations (10 aimed at the face, one sham). Each presentation of 1s duration is separated by 
4s. During a block, the sequence is repeated 10 times for a total of 110 presentations. Each 
grooming block consists of 20 stimuli, separated by ~4s and repeated 5 times for a total of 100 
presentations. A few minutes elapsed between blocks.

2.  Selection criteria for the relevant segments of spontaneous activity
Spontaneous LFPs were selected from stable time windows of the interstimulus interval (ISI) 
between two stimuli of the same type. In other words, we did not consider the activity occur-
ring before the first stimulus presentation in each block. The ISI was defined as the period 
occurring 200ms after stimulus offset and 200ms before stimulus onset. We removed the activ-
ity immediately before and after the stimulus delivery to avoid including any neural activity 
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Fig 1.  Experimental design. (A) Gentle airflow was delivered by a custom-built system of air nozzles supplied by computer-controlled 
pressure valves that produced airflows of 10 Pa for a duration of 1 s. The shaded area on the right upper muzzle indicates the spread of 
skin mechanoceptors activated by the stimulus. (B) Grooming sweeps to the same skin area as in (A) delivered by a trusted human. (C) 
Time course of the last 6 airflow trials in an airflow block followed by the first 6 grooming trials in the subsequent touch block. Blue and 
purple vertical lines indicate successive airflow and touch trials, respectively. The width of the line indicates the stimulus duration = 1s. 
Vertical gray bars indicate the spontaneous activity selected between two stimuli of the same type. Note that there is no selection before 
the first trial of a new block. (D) Event-related LFP from a sample recording session. Color code of LFP activity corresponds to the esti-
mated location of V-probe contacts in different nuclei of the amygdala. Lines with alternating colors refer to contacts on the boundary 
of two nuclei (E). Corresponding recording sites in the amygdala. C=central, green; L= lateral, yellow; B = basal, orange; AB = accessory 
basal, red; Pl = paralaminar, blue. Panels (A) and (B) appear as Fig 1 in (Martin et al., 2023) [6] and are used here under the Creative 
Commons CC-BY 4.0 license.

https://doi.org/10.1371/journal.pcbi.1012247.g001

https://doi.org/10.1371/journal.pcbi.1012247.g001
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related to the processing of the stimulus. Including any direct information about the stimulus 
could bias the classifiers to discriminate between the stimulus-evoked responses rather than 
the spontaneous activity between stimulus delivery.

Additionally, since the grooming touches were delivered by a human experimenter, the ISI 
between successive grooming stimuli do not have uniform lengths. To ensure uniform time 
windows for our classifiers, we selected a spontaneous activity window from the ISI for their stable 
statistical properties. ISI signals in each session were trial averaged and the standard deviation for 
each timepoint was calculated. Spontaneous LFP for each trial was chosen by inspecting the trial- 
averaged ISI and determining a time window with low trial-wise variability. See S1 Text for details.

3.  Machine learning for LFP analysis
Recent years have seen major advances in machine learning (ML) in the biomedical sciences, 
including cancer diagnosis [18], detection and treatment of Alzheimer’s and Parkinson’s 
diseases [19,20], and seizure detection [21]. We are particularly motivated by LFP-Net [20], 
which uses convolutional neural networks to analyze LFP data from human subjects with DBS 
implants. We implemented our ML-based methodology using two well-known and popular 
types of classifiers: a convolutional neural network (CNN) based on [20], and a support vector 
machine (SVM) [22] (see Materials & Methods). The use of two classifiers allows us to check 
our findings and compare their performance in a practical setting (see S1 Text for more details 
on ML architectures and comparisons).

Spectral features are often chosen as a reliable feature space for decoding behavior from 
LFP [23]. To make use of spectral information and at the same time accommodate potential 
nonstationarity in the data, we use single trial (~500ms) time-frequency plots, or spectro-
grams, of LFP as inputs to our classifiers. Deep neural networks have rarely been applied to 
characterize single trial LFP events [24]. Both CNN and SVM leverage statistical methods to 
nonlinearly transform spontaneous LFP spectrograms and “learn” spatiotemporal patterns 
(features) that separate airflow from touch in this new feature space. Given that context- 
related modulation was seen in a fraction of the single units [6], we hypothesize that sponta-
neous LFP, which records from a larger population of neurons at the mesoscale, may provide a 
more reliable feature space for successfully decoding context than single-units.

The workflow, the format of the data, and features of the two classifiers used to decode 
spontaneous activity trials are shown in Fig 3. For each recording session and for each nucleus 
recorded from on that session, we trained one CNN and one SVM. Spontaneous activity trials 

Fig 2.  Autonomic state difference in airflow versus grooming blocks. (A) Mean heart rate measurements during airflow and 
grooming blocks for Monkey A (left), Monkey S (center), and Monkey C. (B) Mean RSA strength during airflow and grooming blocks 
for Monkey A (left), Monkey S (center), and Monkey C. The noticeably higher HR in monkey C may be due to generally higher mean 
and variance of its HR (see [6]).

https://doi.org/10.1371/journal.pcbi.1012247.g002

https://doi.org/10.1371/journal.pcbi.1012247.g002
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Fig 3.  Analysis pipeline. (A) Sample spectrogram images of “airflow” trials (top) and “touch” trials (bottom) used in the training set of a classi-
fier. (B) Spontaneous LFP trace from a single trial. Signals recorded from the same nucleus (indicated by the same color) are grouped together. 
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were labelled as “airflow” (for neural activity occurring during the spontaneous activity win-
dow between two airflow trials in an airflow block) or “touch” (for neural activity occurring 
between two grooming trials in a grooming block).

For each labelled time window of spontaneous activity, we compute a spectrogram and 
use the resulting spectrogram-label pairs to form our dataset. Examples of airflow and 
grooming spectrograms used in training are provided in Fig 3A. To ensure a large enough 
dataset for each classifier, spectrograms originating from the same anatomical region in 
a single session were grouped together to form one dataset. That is, the signals from all 
recording electrodes that are determined to be in the same anatomical region are grouped 
together. We do this for every session and every nucleus recorded in that session. For each 
nucleus-session dataset, we trained one instance of a CNN and SVM each (Fig 3B). Each 
classifier is trained on a random subset of the data (the training set) and a hold-out set (the 
validation set) is used to measure overfitting. After training converges, the model with the 
lowest validation loss is chosen as the best model. Lastly, we evaluate the best model perfor-
mance on a separate hold-out set (the test set).

The architecture of the CNN is shown in Fig 3C and detailed in Methods. The first half of 
the network consists of two successive 2D convolutional layers, followed by a Max Pool layer. 
The convolutional layers learn a set of 48 convolutional kernels (in both time and frequency) 
which identify distinguishing features of the spectrograms in the training set. These features 
are then flattened and sent to the second half of the network for classification. The second half 
of the network consists of two fully connected linear layers which perform linear classification 
on the features learned from the convolutional layers. In Fig 3D, we provide a schematic of the 
SVM architecture. We train SVM using radial basis functions (RBF) kernel because tradi-
tional linear SVM did not discriminate well between “airflow” and “touch”, suggesting that a 
nonlinear embedding is necessary in our context. These modern machine learning methods 
are useful for detecting patterns in the training set that are not apparent to the naked eye when 
looking at example trial spectrograms.

4.  Context can be reliably decoded from spontaneous LFP in amygdala
Results from training distinct classifiers for each recording session and nuclei are shown in 
Fig 4. For each classifier, we report a summary of the accuracy distribution for a single net-
work computed over 50 instances (more details of the training process are explained in the 
Methods section). The accuracy for a single instance is calculated as the fraction of correctly 
labelled spectrograms from the test set; the two labels are equally represented in the test set. 
This process is repeated 50 times to generate a distribution of 50 accuracy values for a single 
classifier. We report the 10th, 50th and 90th quantile accuracy for each classifier. There are 
two classifiers (one CNN and one SVM) for each recording session and each nucleus. Accu-
racy results using CNNs for all recording sessions across all 3 subjects are shown in  
Fig 4C Similarly, accuracy results using SVMs for all recording sessions across all 3 subjects 
are shown in Fig 4D.

Both CNNs and SVM decode context from spontaneous LFP spectrograms reliably. The 
distribution of accuracies for each session are shown to be consistently above binary chance 

Spectrograms are computed using a complex Morlet wavelet transform and labeled as “airflow” or “touch” depending on block type, then used to 
train a classifier (CNN or SVM) to discriminate between airflow and touch spectrograms for each nucleus. (C) Architecture of the CNN consisting 
of two 2D convolutional layers, followed by max-pooling. The outputs are then flattened and fed through two fully connected linear layers and a 
final 2-node output layer which determines the predicted label of “airflow” or “touch”. (D) Schematic of the SVM classifier consisting of a non- 
linear embedding using radial basis function (RBF) kernels followed by a linear classifier.

https://doi.org/10.1371/journal.pcbi.1012247.g003

https://doi.org/10.1371/journal.pcbi.1012247.g003
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(50%). Moreover, to ensure that correlated noise in the datasets was not contributing signifi-
cantly to network accuracy, we sampled from a pseudo-null distribution for each classifier 
using a bootstrap method. The null distribution is calculated by first shuffling the labels of the 
training set so that spectrograms are randomly assigned to the “airflow” and “grooming” task 
equally. The training process is repeated as usual. Using this procedure, we obtain a “null dis-
tribution” of accuracies arising from the model performance on true-labelled test set. This gives 
an estimation for the likelihood of obtaining accuracies better than 50% in a given dataset due 

Fig 4.  Decoding context reliably from spontaneous LFP spectrograms. Average accuracy was computed over 50 sample CNNs and SVMs. Trials were randomly 
reassigned to the training, validation, and testing sets for each sample classifier using an 80-10-10 split. (A) CNN classification accuracy for each nucleus, averaged over 
all sessions for three subjects. (B) SVM classification accuracy for each nucleus, averaged over all sessions for the same subjects.(C) A scatterplot comparing accuracy 
results for CNN and SVM in each session and nuclei. (D) Accuracy results for all recording sessions using the CNN classifier. The 50% quantile of accuracy is repre-
sented by a dot, with vertical bars reporting the 10% and 90% quantiles. Colors indicate the nucleus in which the recording contacts were located. Gray bars indicate the 
null distribution obtained from bootstrapping. (E) Accuracy results for all recording sessions using an SVM with RBF kernel. Average values and quantiles as in A. Gray 
bars indicate the null distribution obtained from bootstrapping. C = central, green; B = basal, orange; AB = accessory basal, red; L = lateral, yellow.

https://doi.org/10.1371/journal.pcbi.1012247.g004

https://doi.org/10.1371/journal.pcbi.1012247.g004
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to correlated noise. For each recording session and across nuclei, there is no overlap with the 
null distribution for either classifier. This gives confidence that the classifiers are not decoding 
context due to chance. The variability in performance across repeated training for each nucleus 
can be accounted for, in part, by the number of recording contacts present in each

nucleus during a recording session. As expected, the accuracy of both CNN and SVM 
classifiers is positively correlated on the number of contacts present in that region during a 
recording session (see S1 Text).

5.  Discriminatory power for context is not nucleus-specific
Next, we determined whether contextual encoding was localized to a particular nucleus within 
the amygdala. We hypothesized that activity recorded from the basal and accessary basal 
nuclei would be more reliable for decoding context-related information given that they receive 
more direct inputs from the prefrontal cortex. Contrary to our expectations we found no dif-
ference in decoding accuracy across the nuclei with either classifier type (Fig 4A and 4B). This 
is confirmed by applying the Kruskal-Wallis H-test (or one-way ANOVA on ranks) across the 
four conditions: we failed to reject the null hypothesis with p > 0.1 in all three subjects. These 
results suggest that the context-related signals in the spectrograms of spontaneous activity do 
not depend on the hypothesized inputs from the prefrontal cortex, rather, contextual infor-
mation encoded in spontaneous activity arises from inputs that are distributed quasi-equally 
across the nuclei of the amygdala.

Discussion
In neurophysiology, “baseline” refers to the spontaneous ongoing activity of neurons in 
the absence of the organism’s engagement with external stimuli or task variables. External 
stimuli and cognitive processes shift the brain away from baseline toward task-specific or 
stimulus-specific functional states. However, at the cessation of the external stimulus or the 
completion of the cognitive process, the brain is expected to return to the same baseline state 
or spontaneous activity. Here we show that this is not always the case; when the context is 
different the spontaneous activity is also different. Although few studies explored the informa-
tion contained in spontaneous activity, the discovery of intrinsic dynamics of the brain, such 
as memory replay [25], the default mode network (e.g., [26]), and off-task cognitive process 
[27], raised the possibility that this activity carries relevant and decodable information [28]. In 
our study, the most parsimonious account for the persistence of the contextual information in 
the spontaneous activity during the inter-trial period is that context operates on a significantly 
longer time scale than the individual stimuli and this time scale spans the entire block. The 
context (social and non-social) is present throughout the experiment, akin to a background, 
and the individual stimuli are processed in relation to this context.

As context is often signaled to the primate amygdala by the prefrontal cortex [29,30], it is 
expected that the nuclei that receive direct prefrontal inputs would show the strongest  
context-related activity. Specifically, the basal and accessory basal nuclei of the amygdala 
receive monosynaptic inputs from multiple prefrontal areas whereas the lateral and the central 
nuclei are connected to the prefrontal cortex through multi-synaptic pathways [31–34]. Con-
trary to this prediction, both CNN and SVM decoded with similar accuracy context- 
related signals from the LFPs in all the nuclei of the amygdala. It is unlikely, therefore, that 
the spectrograms of spontaneous activity are shaped by direct synaptic currents transmitted 
from prefrontal areas to select nuclei of the amygdala. It is more likely that a broader, global 
phenomenon, such as the autonomic state of the animal, is signaling context to the amygdala. 
Indeed, we report significantly different autonomic states during the airflow and the touch 
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blocks (Fig 2). During the airflow blocks, the monkeys are by themselves in a booth, and while 
they receive innocuous airflow stimuli directed at their face, they are alert, attentive, and 
highly responsive to external stimuli. During the touch blocks, when a bonded and trusted 
human grooms their face, the monkeys close their eyes and relax their facial musculature. 
The groomer’s presence is marked by reductions in heart rate and increases in heart rate 
variability that indicate lower sympathetic tone and higher parasympathetic tone [17,35]. The 
autonomic state of the body is transmitted to multiple areas of the brain through interoceptive 
pathways [36–38]. It is possible, therefore, that the spontaneous activity across all nuclei of the 
amygdala is shaped by interoceptive inputs that were widely different during the airflow and 
touch blocks. Similar modulation of the spontaneous activity by interceptive inputs have been 
documented in mice [39]. Whether LFPs in different nuclei of the amygdala carry different 
or similar signals, it remains unclear how context-related or interoception-related features of 
LFPs might contribute to decoding accuracy.

Comparison with previous work
In this study the LFPs showed lower decoding accuracy compared to single unit population 
activity during the same periods of spontaneous activity [6]. This may be related to the short 
periods examined (approximately 500 ms, but in some cases as short as 400 ms) and the low 
number of trials (about 400 trials for training) available for session and subject specific analy-
sis. In the single unit approach, stable cells identified across all recording sessions and subjects 
(a total 237 units) were used to train a single SVM. These cells were randomly sampled with 
replacement to train the SVM and it was determined that a population of 127 single units 
were predictive of context at the 95% confidence level. This population size of single units 
is far greater than the number of stable cells recorded in an individual session and makes 
no distinction between nuclei. Given that our LFP approach is nucleus-, session-, and even 
subject-specific, it is to be expected that decoding accuracy with LFP is lower than with single 
unit activity.

ML methodology
In this paper, we used a simple framework based on training and cross-validating ML classifi-
ers. A positive result, i.e., accurate classification of LFP samples, is interpreted as evidence that 
the LFP encodes the contextual information we seek. However, we caution that the converse 
need not be true: there are a number of reasons why the classifier may not accurately discrim-
inate between airflow and touch; had we found a negative result, it need not mean contextual 
information was absent. The ML classifier may have been unable to “learn” a good repre-
sentation from the given data due to constraints imposed by its architecture and/or training 
protocol; after all, our CNN follows the original LFP-Net design very closely, and it may be 
that a neural network model with more parameters would be able to “discover” better repre-
sentations. Or, the dataset may have been too small, the measurements too noisy, or there may 
have been other limitations imposed by the experimental design. Indeed, we showed that the 
same ML classifiers (CNN and SVM) trained on raw time series data could not discriminate 
airflow and touch stimuli accurately, but classifiers trained on spectrograms can do so rather 
accurately. This reinforces the common understanding that representation of data can signifi-
cantly impact the efficacy of ML classifiers, and the standard ML techniques used in this paper 
do not seem to be able to “discover” time-frequency representations on their own [40].

A second example illustrating the limitation of our methodology (detailed in Fig G in 
S1 Text) explores the question of whether contextual information is predominantly carried 
by rhythmic activity in specific frequency bands. There, as a first step toward studying this 
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question, we restricted our attention to those frequency bands showing the greatest change in 
spike-triggered average power under the two stimulus classes. We found that the classification 
accuracy CNN degraded significantly when restricted to this narrow band, suggesting that 
CNN require broad-band information for accurate classification. But a second test statistic, 
specifically the area under the receiver operating characteristic curve, did not indicate a differ-
ence between CNNs trained on broad-band and band-limited data. These outcomes suggest 
that the question of whether contextual information is encoded in specific measurements can 
be subtle: it depends not only on the data at hand and on the classifier architecture, but also 
on the choice of task and test statistic.

The ML approach we took has other limitations: like many ML methods, the methods used 
here are opaque and do not directly tell us which neurobiological features contribute the most 
to classification accuracy. Furthermore, our classifiers are not generalizable: they are trained 
on data obtained from different subjects and sessions when the linear probes recorded neural 
activity from different nuclear subdivisions of the amygdala, and our classifiers do not gener-
alize when applied to data obtained from other sessions (see S1 Text). This was expected based 
on previous work that mapped dissociable functions to different mesoscale subregions of the 
amygdala [41]. For the purpose of this paper, our (non-generalizable) approach was sufficient 
to conclude that contextual information is present in spontaneous LFP.

It remains to determine which features of LFPs were used by our classifiers to achieve their 
performance. We expect future work focusing on baseline activity in the amygdala will shed 
light on how this often-ignored feature of brain activity holds specific information about con-
text, interoception, and other aspects of brain states. We suspect simpler, more  
biophysically-interpretable classifiers that disentangle biological sources of variability from 
measurement-specific variability (e.g., those related to probe placement, etc.,) may improve 
overall generalizability and may be more robust to variability across subjects and small 
changes in probe placement. Such ML models may also enable feature identification. In a dif-
ferent direction, more general classifier architectures (e.g., foundation models) may improve 
automatic discovery of effective representations. In any case, if we are able to isolate those 
features of LFP used by our ML classifiers to achieve their performance, then ML methods 
– in addition to being effective information detectors – would be useful for generating new 
hypotheses and may directly contribute to a clearer picture of contextual information coding 
in the amygdala and elsewhere.

Concluding remarks
Despite the limitations mentioned above, the spectrogram of short segments of LFPs recorded 
during periods of spontaneous neural activity were sufficiently different to allow two different 
classifiers to discriminate the social context in which the two types of tactile stimulation took 
place. While it is unclear which features of the LFPs carry the contextual signal, it is apparent 
that this signal is retained in the spontaneous activity of mesoscale network in the amygdala 
and remains unchanged for the duration of the block. These identifiable, spontaneous states, 
specific for context, were similar across the component nuclei of the amygdala. In contrast, 
our previous study on the stimulus-evoked LFPs in the amygdala showed remarkable differ-
ences between the component nuclei, attesting to the presence of functional subnetworks with 
highly differentiable responses to visual, auditory, and tactile stimuli [41]. It is remarkable that 
despite such inter-nuclear differences, the networks that give rise to context-specific inter-trial 
LFPs converge on two patterns and each pattern is decodable from all nuclei. We surmise, 
that at least in this case, interoceptive afferents that signal the physiological state of the body, 
which was different between the grooming and the airflow blocks, might override the anatom-
ical and functional distinctions between the nuclei. It is possible that sustained internal states 
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that instantiate the social context may predispose the amygdala to evaluate differently the 
salience, valence, and behavioral significance of external stimuli.

Materials and methods

Experiment
We did not conduct any new experiments for this paper. All data involving live subjects 
were collected as part of an earlier study [6]; see the Methods section of that paper for 
details. In terms of data provenance and localization of LFP sources to different amygdala 
nuclei we used the following approach. In monkey A, we used initially probes with 16 
channels distributed over a shaft length of 6mm. The distance between the contact was 400 
microns. Given that these probes were lowered into the amygdala along its vertical axis, and 
along this axis the central nucleus is only 1.5-2mm in diameter whereas the basal nucleus is 
4 mm, we collected LFPs from two contacts in the central and up to 10 contacts in the basal 
nucleus. Naturally as we sampled the more anterior and posterior “slices” of the amygdala 
these numbers changed because the more anterior slices do not have a central nucleus 
whereas the more posterior slices have smaller basolateral nuclei. Each recording session 
was different not only because we were recording from different anterior-posterior loca-
tions in the amygdala but also because the probes were not lowered every day to the same 
depth. In monkeys S and C we graduated to probes with 32 contacts that doubled the yield 
but retained the unequal number of recording sites from each nucleus. Finally in monkey C 
we recorded simultaneously from the left and right amygdala, further increasing the yield 
but retaining the unequal sampling. The location of each contact was established based on 
two sources of information, as follows: (1) On the MRI-based atlas constructed for each 
monkey, we drew on each 1mm slice the estimated contour of the nuclei (these contours 
were rarely visible, but we developed a method of estimation that has been validated by 
post-mortem histology). (2) As the probes were advanced into the brain, we listened and 
watched the changes in neural activity registered by each contact and verified that these 
changes occurred at the expected depths of traversing different structures (e.g., cortex, 
white matter, basal ganglia, anterior commissure, etc.). Based on the location of the top 
and bottom contact we then drew on the MRI slide the position of each contact relative to 
the pre-established contour of the nuclei. The maximal margin of error was typically 500 
microns, i.e., 2 contacts mis-assigned to the nuclei.

Summary of recording electrodes sampling for each nuclei
For each recording session, the V-probes were lowered to different anterior-posterior and 
medial-lateral coordinates of the amygdala. Given the difference in positioning and relative 
size of the nuclei, the number of recording electrodes sampling each nuclei is variable across 
sessions. We present a summary of the number of recording electrodes across all sessions in 
Table 1 below.

Table 1.  Summary of recording electrode distribution across sessions.

Nucleus Min 20% 50% 80% Max
Accessory Basal 7 9 14 22 24
Basal 1 3 12 21 32
Central 1 1 4 6 12
Lateral 2 5 20 26 32

https://doi.org/10.1371/journal.pcbi.1012247.t001

https://doi.org/10.1371/journal.pcbi.1012247.t001
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Materials
All models and data analysis were run with Python using popular open-source packages like 
Pytorch-1.11.0, numpy-1.22.4, scipy-1.12.0, and scikit-learn-1.1.1. We have released all rele-
vant source code at https://github.com/anaucoin/Aucoin-ML-LFP-2024. Data available upon 
request.

Heartrate and respiratory sinus arrhythmia
Instantaneous heartrate values were computed from the inverse of the duration between two 
heartbeat times (IBI). Values above 240 BPM or below 40 BPM (IBI below 250ms and above 
1500ms) were removed. All noise and movement artifacts identified were also removed. 
Heartbeat values were interpolated to a 1ms timescale using a modified Akima cubic Hermite 
polynomial.

Heartrate variability [17,42] was calculated using a spectral density estimation method. 
Spectral power density was computed from the cleaned heartbeat times using a multitaper 
method in sliding windows of 60 seconds and an overlap of 3s. A total of 7 Slepian tapers were 
used for smoothing. The set of k Slepian tapers are the first k eigenvectors found by solving an 
eigenvalue problem ordered by the eigenvalues such that the 0th taper is the eigenvector asso-
ciated with the largest eigenvalue [43]. For all sequences xn ∈  l2  of length N, the sequences 
with maximal energy concentration on the interval −[ ]W W,  are the eigenvectors g nk ( )  
which satisfy
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For each time window bi , the power spectra S fbi( )  were normalized to have unit area between 
0.25 Hz and 0.5 Hz, corresponding to respiratory rates of 15 and 30 breaths per minute. We 
define respiratory strength in each time window as the average power at the peak  ±  half band-
width for peaks occurring between 0.25 Hz and 0.5 Hz. In time windows with no peaks, the 
average power across the entire 0.25 to 0.5 Hz window was used. This sequence of respiratory 
strengths is a measure of RSA in each time window denoted by P brsa i( ) . RSA strength is then 
normalized using the median power across all time windows µ= ( )( )median P brsa i  to compare. 
Thus, RSA strength is given by
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https://github.com/anaucoin/Aucoin-ML-LFP-2024
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Spectrogram computation
To compute trial spectrograms, we use a Continuous Wavelet Transform (CWT) method [44]. 
Unlike traditional spectral methods like Fast-Fourier Transform (FFT), which collapse time, 
CWT provides a trade-off between spectral and temporal resolution. CWT is a natural choice 
as we do not expect trial LFPs to be stationary. For a given signal x t( ) , the CWT x f tˆ ,( )  is 
defined as

	 x f t x
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where ψ t( )  denotes the complex conjugate of the wavelet function ψ t( ) , and Fs  is the  
sampling rate of the given input signal x t( ) .

For each trial of spontaneous LFP, our choice of wavelet function ψ t( )  is a Complex  
Morlet Wavelet
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where f0  is the central frequency and fb  is the bandwidth. All spectrogram images were 
computed using the scipy.signal.cwt function with ‘Morlet2’ wavelet and a standard central 
frequency of 5 for a good balance of temporal and frequency resolution. To reduce model 
training computation time, we limited the input image size by considering only frequencies in 
the range of 1–50 Hz for each spectrogram. Similar networks were trained with frequencies up 
to 100Hz and showed no significant increase to model accuracy.

Convolutional neural network
Convolutional Neural Networks (CNNs) are deep multi-layer networks widely used in com-
puter vision and image classification tasks [45]. The simple CNN architecture used in our 
paper can be thought of in two parts: (1) a convolution operator and (2) a linear classifier. The 
layers in the convolutional part of a CNN typically include three operations:

1.	 Convolution

2.	 Non-linear activation

3.	 Pooling

Though not all operations need be in every “layer” of the network. The convolutional layer 
involves convolving an input image x with a collection of K kernels of size s s× . s is typically 
chosen to be small to preserve locality. In our network, s =3. The kernels are learned by the 
network during training and output a collection of K local features. These features are then 
passed through a non-linear activation function (typically ReLU) and then through a pooling 
operation (such as Max or Average Pooling). The non-linear activation can be thought of as 
thresholding and increasing the receptive field in a biological sense, and the pooling operation 
serves to further reduce dimensionality. These steps can be repeated to increase the depth and 
complexity of the network. The result of these successive operations is a collection of features 
extracted from each input image. These features are then flattened into a single vector and 
used as input into the linear classifier part of the CNN. This second half of the network con-
sists of a series of fully connected linear layers, which compose a linear map that transforms 
the flattened features into an output vector y of length Cn ,  the number of classes. Each yCi
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describes the probability that the input image x belongs to class Ci . The weights and biases of 
the linear map are optimized during training.

The exact model architecture and parameters used in this analysis, can be found in Table 2. 
For each recording session, and for each nucleus recorded in that session, we trained a CNN 
to classify spectrograms of the spontaneous LFP signals as “airflow” or “touch”. The sponta-
neous spectrograms for all channels in a particular anatomical region were used as inputs into 
the network for the training, validation, and testing stages. Bootstrapping (random sampling 
with replacement) was used to sample the “touch” images so that there was an equal number 
of “touch” and “airflow” images in the dataset. The data was then split into training, valida-
tion, and testing subsets with an 80-10-10 split. An equal class representation was ensured in 
each split. Each input image was normalized using the “MinMaxScaler” from scikitlearn pack-
age fit only on the training set to prevent erroneously giving the network information about 
the entire dataset. The network parameters were updated through back propagation using the 
Adam optimizer and a cross-entropy loss function was used.

The data was fed into the model in mini batches of size 20 and trained for 40 epochs. This 
means that the model saw 20 spectrogram images before updating the model parameters 
and saw all spectrogram images a total of 40 times. During training, the model was shown 
spectrogram images from the validation set to track over-fitting of the model. If the loss of 
the model decreased on the validation set, the model parameters were saved as the current 
best instance of the model. Once all 40 epochs were complete, the best model (the model with 
the lowest validation loss), was used in the testing stage of the model to obtain the AUROC 
metric. To analyze the accuracy and robustness of each model, we repeated this procedure 50 
times: we reinitialized the model, randomly assigned spectrograms to the training, testing, and 
validation sets, trained the new model and recorded the accuracy on the test set. The accuracy 
reported for each model is the average percentage of correctly classified images over 50 model 
initializations. The spread of accuracy values for each distinct classifier is displayed by the 10th 
and 90th quantiles.

Support vector machine
Support Vector Machines (SVM) are a popular supervised learning method for classification 
and regression [46]. They have been shown to be effective even in high dimensional settings 
and settings where the number of dimensions is much higher than the number of samples, 
such as classification of gene expression data [47] and image segmentation at the pixel level in 
microarray images [48]. SVMs construct a high-dimensional hyperplane, called the decision 

Table 2.  Summary of model architecture. Note that Li  and Wi  will vary based on frequency bands analyzed 
and length of input signal.

Type of Layer Size of output feature map Kernel size Stride size
Convolution + ReLU L W1 1 24× × 3 3× 1 1×

Batch Normalization L W1 1 24× × N/A N/A

Convolution + ReLU L W2 2 48× × 3 3× 1 1×

Max Pool L W3 3 48× × 2 2× 1 1×

Batch Normalization L W3 3 48× × N/A N/A

Fully Connected 64 N/A N/A
Dropout 64 N/A N/A
Fully Connected 2 N/A N/A

https://doi.org/10.1371/journal.pcbi.1012247.t002

https://doi.org/10.1371/journal.pcbi.1012247.t002
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boundary, to separate training data by their labeled class. Consider a training set of pairs 
x yi i,( )  where yi  is either +1 or -1 denoting which class xi  belongs to. If the training data is 

linearly separable, we can characterize a maximum-margin hyperplane as a vector satisfying 
w x bT + = 0 . Two paralell hyperplanes (1) w x bT + =1  and (2) w x bT + =−1  can then be 
found to determine the decision boundary. If xi  lies above (1), it is labelled as belonging to 
the +1 class. If xi  lies below (2), it is labelled as belonging to the -1 class. The maximum mar-
gin hyperplane is chosen to maximize the distance between the decision boundary and nearest 
data points. In the linear classifier case, this is equivalent to solving the following optimization 
problem to find the optimal model parameters:

	 w argminLoss w datafitted
w

= ( )| 	 (6)

In the case where a linear decision boundary is insufficient, the linear classifier can be made 
nonlinear through a non-linear kernel function. The kernel functions embed the data xi  into 
a new vector space called the feature space. This procedure is sometimes called the “kernel 
trick”. The new optimization problem replaces the data in (6) with a non-linear transforma-
tion of the data

	 w argminLoss w datafitted
w

= ( )|φ( ) 	 (7)

where ϕ is the choice of kernel function. In practice, the dual formulation of this optimization 
problem is used to avoid explicitly mapping the data points into the feature space. This helps 
to better scale the computational efficiency and memory usage, especially when the number of 
features in the data is high.

To train the SVM, we used svm.LinearSVC and svm.SVC from the popular scikitlearn 
package. We trained a non-linear classifier with radial basis kernel functions using the dual 
form for efficiency. The input data into the SVM are the flattened spectrograms labelled as 
“airflow” or “touch”. The dimension of the input data is T F×  where T is the number of time 
points and F is the length of the frequency space discretization used. F and T will vary on the 
frequency bands of interest and the length of spontaneous LFP for that session. Training, 
validation, and testing of the SVMs were the same as in training of CNN.

Supporting information
S1 Text.  Fig A. Selecting stable trials of spontaneous activity. An example of the sponta-
neous LFP selection criteria for a single recording session. The solid blue line is the trial- 
average of the signals during each ISI. The vertical green line is stimuli onset. The light 
blue shading is 2 st. dev. of the mean. The gray box is the stable time window chosen as 
the spontaneous activity window. Fig B. Decoding context fails with linear SVM. Average 
accuracy was computed over 50 sample linear SVMs. Trials were randomly reassigned to 
the training, validation, and testing sets for each sample classifier using an 80-10-10 split. 
Accuracy results for all recording sessions using the CNN classifier. The 50% quantile 
of accuracy is represented by a dot, with vertical bars reporting the 10% and 90% quan-
tiles. Colors indicate the nucleus in which the recording contacts were located. Gray bars 
indicate the null distribution obtained from bootstrapping. Fig C. Decoding accuracy is a 
function of data availability (number of recording electrodes). Classification accuracy for 
one sample of CNN (left) and SVM (right). Each dot represents the accuracy of a single 
classifier trained on data from one session and nucleus. Fig D. Computational costs of 
CNN and SVM. The computational time for training a single classifier for CNN (left) and 

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012247.s001
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SVM (right) as a function of the number of recording electrodes (which most influences 
training dataset size). Each dot represents a single realization of the classifier. Fig E. Com-
parison of SVM using raw timeseries data over spectrogram. SVM classification accuracy 
for each nucleus, averaged over all sessions for the same subjects (Monkey A (left), Monkey 
C (middle), Monkey S (right)). More saturated colors indicate the SVM accuracy using 
raw time series trials. SVM decoding accuracy using trial spectrograms (reported in the 
main text) is shown in more transparent color for comparison. Fig F. Validation loss scales 
poorly for data from other sessions. Training (blue) and validation loss (orange) for data 
from the same session. Using a validation set from a different data set shows that although 
correlated, the loss values do not generalize as well on data from alternate sessions (green). 
Fig G. Classifier accuracy on band-limited data. (A) Left: Mean Spike-Triggered Average 
(mSTA) traces for “airflow” (blue) and “touch” (purple) computed for ±80 ms relative to 
spikes occurring during baseline. mSTA is computed by averaging STAs over all cells in 
the same nucleus. The number of visible lines corresponds to the simultaneously recorded 
stable cells in each nucleus used to compute mSTA. Pale lines are single STA traces and 
dark lines are the mean STA. Right: Comparison of average power spectra of STA traces 
for airflow and grooming blocks. The two spectra show differences in the 10–17 Hz 
(yellow) and 17–25 Hz (blue) bars. (B) A trial spectrogram illustrating the power in the 
10–17Hz (yellow) and 17–25Hz (blue) frequency bands. (C) Accuracy of CNNs trained on 
spectrograms restricted to only 10-17 Hz (yellow), 17–25Hz (blue) and 10–25 Hz (green) 
bands. Plots are organized by nucleus (rows: Central, Basal, Accessory Basal, Lateral) and 
recording session (columns), with number of recording contacts in each nucleus displayed 
in the top left corner. The horizontal black dotted line represents the mean accuracy of the 
network trained on the full spectrogram. The horizontal blue line represents theoretical 
chance at 50%. The gray bars correspond to 1 and 2 standard deviations about the mean. 
Fig H. AUC show no distinct difference between network discriminability using broad-
band versus band-limited data. AUROC of CNNs trained on spectrograms restricted to 
only 10–17 Hz (yellow), 17–25Hz (blue) and 10–25 Hz (green) bands. Plots are organized 
by nucleus (rows: Central, Basal, Accessory Basal, Lateral) and recording session (col-
umns), with number of recording contacts in each nucleus displayed in the top left corner. 
The horizontal black dotted line represents the mean accuracy of the network trained on 
the full spectrogram. The horizontal blue line represents theoretical chance at 50%. The 
gray bars correspond to 1 and 2 standard deviations about the mean. 
(DOCX)
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